REAL ANALYTICITY OF HAUSDORFF DIMENSION
FOR HIGHER DIMENSIONAL HYPERBOLIC
GRAPH DIRECTED MARKOV SYSTEMS
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ABSTRACT. In this paper we prove that the Hausdorff dimension function of the limit
sets of strongly regular, hyperbolic, conformal graph directed Markov systems living in
higher dimensional Euclidean spaces R?, d > 3, and with an underlying finitely irreducible
incidence matrix is real-analytic.

1. INTRODUCTION

In this paper we deal with the problem of regularity of the Hausdorff dimension function
of the limit sets of strongly regular, hyperbolic, conformal graph directed Markov systems
living in higher dimensional Euclidean spaces R?, d > 3, and whose underlying incidence
matrix is finitely irreducible. The foundations of the theory of hyperbolic, conformal graph
directed Markov systems were laid in [4]. This theory extends that of hyperbolic, conformal
iterated function systems developed in [6]. Extensive research in this field has been done
before. As we are mainly interested in this article in regularity properties of the Hausdorff
dimension function, we would like to bring to the attention of our readers article [7], in which
we explored the continuity of the Hausdorff dimension in the general case (d > 1), as well as
papers [7] (sections 6 and 8), [1] and [3], where the problem of regularity of the Hausdorff
dimension was treated in the complex plane (case d = 2), under the assumption that
the generators of the systems are holomorphic. In [3] the real-analyticity was established
under weaker assumptions (to our knowledge). In the present paper we go beyond the
plane by investigating the case d > 3. In this case, the conformal generators of the systems
are not analytic (unless they are affine), but in view of Liouville’s Theorem (see [2], for
instance) they all take on the same canonical form. This enables us to parametrize the
space My of such maps by ¢ =2+ %d(d + 3) real parameters, and thereafter define natural
notions of differentiability and real-analyticity on the space (R?)!, where I is a countable
set. In our framework [ is the alphabet of the graph directed Markov systems. Our main
result, Theorem 7.2, asserts that the Hausdorff dimension function is real-analytic when
this function is restricted to an open subset W of (R?)! corresponding to a family of strongly
regular, hyperbolic, conformal graph directed Markov systems with a common alphabet I,
a common finitely irreducible incidence matrix and which satisfy the open set condition.
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The main idea of the proot is to ascribe canonically to each graph directed Markov system
® its complexification o acting on C?. This complexification is no longer conformal (with
respect to the Euclidean metric on Cd) but it permits us to define a holomorphic extension
of the normalized derivatives of the generators of ® (see (6.2)). With the help of this
extension we define the family of Perron-Frobenius operators associated to the family of
complexified systems. These operators constitute a holomorphic family (see Lemma 6.4).
This fact and the quasi-compactness property of these operators allow us to apply Kato-
Rellich perturbation theorem to conclude that the corresponding pressure function is real-
analytic. It then follows from the implicit function theorem that the only zero of this
pressure function, which we call Bowen’s parameter, is real-analytic throughout W (see
Theorem 7.1). It is important to note that in order to come to this conclusion we do not
require that the open set condition be fulfilled. Whenever this latter is satisfied, a variant
of Bowen’s formula (see [4]), which identifies the Hausdorff dimension of the limit set of a
conformal graph directed Markov system as the zero of the pressure function, permits us
to conclude that the Hausdorff dimension function coincides with Bowen’s parameter and
thus is real-analytic (see Theorem 7.2). It is also worth pointing out that this fact was
unknown until now even when the underlying alphabet I of the systems is finite.

2. PRELIMINARIES FROM THERMODYNAMIC FORMALISM ON SYMBOL SPACES

In this section we collect the fundamental ergodic (thermodynamic formalism) results
in one-sided symbolic dynamics. All of them can be found with proofs in [4], [5] or [9].
Let I be a countable set and let A : I x I — {0,1} be a matrix, often called incidence
matriz. A finite or countably infinite tuple (commonly called word) w of elements of I is
called A-admissible if A,, = 1 for any two consecutive elements a, b of w. The matrix A is
said to be finitely irreducible provided that there exists a finite set I’ of finite A-admissible
words such that for any two elements a, b of I there is a word v in F' such that the word
ayb is A-admissible. Throughout the entire section the matrix A is assumed to be finitely
irreducible. We denote the set of all countably infinite A-admissible words by

IT? = {(wn)py € I :V(n €N), Ay iy = 1}

Obviously I is a closed subset of /> when this latter is endowed with the product topology,
and we equip the former with the topology inherited from the latter. We further denote
by I the set of all A-admissible words of length n > 1, and by I} the set of all finite
A-admissible words. Recall that the left shift map o : I°° — I°°, which by definition drops
the first entry of w, is defined by the formula

o ((Wn)ols) = @ns1)n2s-

This shift is clearly continuous, and of course o(I3) C IY. Given w € I} we denote by |w|
the length of w, that is, the unique n > 1 such that w € I'}. If w € I and n > 1, then we
will use the notation

Wln 1= w1 ... Wy

We will also denote the empty word by e and declare that its length is 0. For w,7 € I,
we define w AT € I U, U{e} as the longest initial subword common to w and 7. Finally,



for every finite A-admissible word w = wy ... w,, set
w]={r€lIy 7|, =w}.
The set [w] is called the cylinder generated by w.
Let us now talk about functions, also called potentials, on I$°. Given s € (0, 1), recall
that a function ¢ : I3 — C is s-Holder continuous if
0a(1) = U v (1) < 00,

n>1

where
[(w) — ¥(7)]

~ :w,7€]§°and|w/\7|2n}.
s

vonl®) = sup {

We will denote by H, the set of all s-Holder continuous functions on I3°. Recall also that
a function ¢ : I — C is said to be summable if

Z exp(sup(Re 1/1|[i])) < 00.
iel
We henceforth denote by Ky the set of all s-Holder continuous, summable functions.
Now, let ¢ : I3 — C be a continuous function. Let also M, denote the set of all shift-
invariant Borel probability measures on I3°. A measure p € M, is said to be a Gibbs state
for ¢ provided that there are constants C' > 1 and P € R such that

2.1 Ccl < (S <C

(2.1) ~ exp(Re S,¢(1) — Pn) —

for all n > 1, all w € I} and all 7 € [w]. Note that if ¢) has a Gibbs state, then v is
summable. The topological pressure P(1)) is defined as follows:

P(y) = lim llog Z exp(sup(Re S, 1[w))-

n—oo N,
wely

It follows from (2.1) that if ¢ admits a Gibbs state, then P = P(¢)). The proofs of the
following two fundamental results can be found in [4], [5] or [9].

Theorem 2.1. (Ezistence and Uniqueness of Gibbs States) For every Hélder continuous,
summable potential ¢ : I3 — C there exists a unique Gibbs state py on 1. Furthermore,
this state is ergodic.

Theorem 2.2. (Variational Principle) For every Hélder continuous, summable potential
Y IY — C we have

sup {hu(a) +/ Reydu : p € M, and /Rewdu > —oo} =P) = hw(a)—i-/ Redpuy,
Iz Iz

where [y s the unique Gibbs state for 1, and is the only measure at which the supremum
1s taken on.

Any measure that realizes the supremum value in the above variational principle is called
an equilibrium state for ¢). With this terminology, Theorem 2.2 can be reformulated as
follows.
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Theorem 2.3. Ify : I — C is a Holder continuous, summable potential, then the unique
G'ibbs state py for 1 is the unique equilibrium state for .

We will in a moment define the Perron-Frobenius operator Ly, : Cy(IF) — Cy(I3), where
Cy(IY) represents the space of all bounded, continuous complex-valued functions on I.
But first, given ¢ € I and g : I — C, define the mapping goi: I — CU {—o0} by the

formula (i)
. ] ogliw) it Ay, =1
QOZ(C«J)_{ —o0 if Ay, =0
if g € Iy, and

I
—~ O =

. W if Aiwl
goit) ={ 0§ 4

otherwise. Now fix ¢ € I, and notice that for every g € C,
Ly(g) =) e"goi
i€l
is well defined (with the convention that e~ =0, 0 (—o0) = 0 and —oo — (—00) = 0),

belongs to Cy(I5) and [|Ly(9)|lee < Dicrexp(sup(Re|))[|glloo. We have thus defined
the operator £, acting continuously on Cy(I3°) with

1Ly loe < Zexp(Re sup () < oc.

el

IY), the operator

In fact, as proved in [4], £, preserves the Banach space H? := H,NCy(IF) when this latter
is endowed with the s-norm, namely ||g||s := ||g/lco + vs(g), where g € H?. The operator
L, is called Perron-Frobenius operator. As an immediate consequence of Theorem 2.4.6
from [4], we get the following:

Theorem 2.4. If) € K, then e is a simple isolated eigenvalue of the Perron-Frobenius
operator Ly : H? — HE.

One of the key facts needed to prove the real analyticity of Hausdorff dimension is
Theorem 3.8 from [3]:

Theorem 2.5. Let I' C C be an open subset of C, and suppose that the function v+ 1, €
Ks, v € I, is continuous. If the function v — 1 (w) € C, v € I, is holomorphic for every
w € I, then the function v — Ly € L(HY) is also holomorphic.

3. SELECTED FACTS ABOUT GRAPH DIRECTED MARKOV SYSTEMS

In this section we begin our study of graph directed Markov systems. Let us recall the
definition of these systems (see also [4]). Graph directed Markov systems are based upon
a directed multigraph and an associated incidence matrix, (V, I,in,to, A). The multigraph
consists of a finite set V' of vertices and a countable (either finite or infinite) set of directed
edges I and two functions in,to : I — V. For each edge i € I, in(i) is the initial vertex of
that edge and to(7) its terminal vertex. The edge goes from in(7) to to(i). Also, an incidence
matrix A : I x [ — {0,1} is given. That matrix is an edge incidence matrix: it determines
which edges may follow a given edge. And it does so while respecting the multigraph, that
is it has the property that if A,, = 1, then to(u) = in(v). We will consider finite and
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infinite walks through the vertex set which are consistent with the incidence matrix. That
is, adopting the notation from section 2, we denote the set of infinite A-admissible words
I on the alphabet I by

IY={wel”: A =1 foralln>1}.

A hyperbolic Graph Directed Markov System (GDMS) consists of a directed multigraph and
an associated incidence matrix, (V, I,in,to, A), together with a set of non-empty compact
metric spaces { X, }yev, a number s, 0 < s < 1, and for every i € I, a one-to-one contraction
@i + Xio(iy — Xin(s) With a Lipschitz constant less than or equal to s. Briefly, the set

WnWn41

¢ = {901‘ : Xto(z') - m(i)}ie[

is called a hyperbolic GDMS, or simply GDMS for short. We now describe its limit set.
For each w € I}, say w € I}, we consider the map coded by w,

Puw = Puwy O 0Py, * Xto(wn) - Xin(wl)-

For each w € I, the sets ((pw|n (Xto(wn)))zozl form a descending sequence of non-empty
compact sets and therefore ﬂ;’ozl Pisln (Xto(wn)) # (. Since for every n > 1 we have
diam(cpw‘n (Xto(wn))) < s" diam(Xto(wn)) < §" max{diam(X,) : v € V}, we conclude that
the intersection

() et (Kiotwn)

n=1
is a singleton and we denote its element by 7e(w). In this way we have defined the coding
map 7 from Iy to X := €, ., Xy, the disjoint union of the compact sets X,. The set

Jo = mo(I7)
is the limit set of the GDMS ®.
A (hyperbolic) GDMS is called conformal (and thus is a (hyperbolic) CGDMS) if the

following conditions are satisfied.

(a) For every vertex v € V, X, is a compact connected subset of a Euclidean space R?

(the dimension d > 1 being common to all v € V') and X, = Int(X,).
(b) Open Set Condition(OSC): For all a,b € I, a # b,

Pa(Int(Xto(a))) N s (Int(Xeo(r))) = 0.

(c) For every vertex v € V there exists an open connected set W, D X, such that for
every i € I with to(i) = v, the map ; extends to a C' conformal diffeomorphism
of W, into Wiy ).

(d) Cone Property: There exist «,1 > 0 such that for every x € X C R? there exists
an open cone Con(z,v,l) C Int(X) with vertex x, central angle of measure 7, and
altitude (.

(e) There are two constants L > 1 and « > 0 such that

i)l = lli(@)lI] < LIl = I ly — =)

for every i € I and every pair of points x,y € Xy(;), where ||¢}(z)|| means the norm
of the derivative of ¢ at x.
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A GDMS @ which satisfies (a) and (c) — (e) without necessarily satisfying (b) will be
called a WPO CGDMS, where WPO stands for “With Potential Overlaps”. Obviously, a
CGDMS is a WPO CGDMS without overlaps.

The following remarkable result was proved in [4].

Proposition 3.1. Ifd > 2 and a GDMS ® = {p; }icr satisfies conditions (a) and (c), then
it also satisfies condition (e) with o = 1.

As shown in [4], the following result is a rather straightforward consequence of (e).

Lemma 3.2. Ifd > 2 and a GDMS ® = {p;};c; satisfies conditions (a) and (c) (and thus
(e)), then for all w € Iy and all v,y € Wio(,), we have

[log [|¢, ()| = log ¢, (x)]l| <—Ily— [

As an immediate consequence of the previous lemma, observe the following.

(f) Bounded Distortion Property (BDP): There exists K > 1 such that for all w € I}
and all z,y € Xy

el W < Kl ()]

In a different vein, it was proved in [4] that for each ¢ > 0 the following limit exists (and
can be equal to co but not —oo):

1
Py(t) = lim — Al
a(t) = lim —log 3 _ ¢l
wely
This number is called the topological pressure of the parameter ¢. It is important to notice

that pressure is well defined whenever (a) and (c) are satisfied.

From the graph of the pressure function, two fundamental parameters were identified
in [4]. First, Bowen’s parameter BP(®) of a WPO CGDMS ® is defined as

BP(®) :=inf{t > 0: Pg(t) < 0}.
A second useful parameter is the finiteness parameter
G(P) =inf{t > 0: Pg(t) < oo} = sup{t > 0: Pg(t) = c0}.

It turns out that the pressure function is non-increasing on [0, 00), strictly decreasing on
[0(P), ), and convex and continuous on (6(P), co). It is also right-continuous at 0(P).

We now recall Mauldin and Urbanski’s classification of systems in terms of the pressure
function.

Definition 3.3. A WPO CGDMS ® is said to be reqular if there exists t > 0 such that
Pe(t) = 0. Otherwise, ® is said to be irregular.

Definition 3.4. A WPO CGDMS is said to be strongly regular if there exists t > 0 such
that 0 < Py (t) < oo.

Definition 3.5. A WPO CGDMS is said to be cofinitely reqular if all of its cofinite sub-
systems are reqular. (A family ®|p = {@; }icr is said to be a cofinite subsystem of a system

O = {p;}icr if F C I and the difference I \ F is finite.)

The following fact, which relates the diverse kinds of regularity, can be found in [4].
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Proposition 3.6. Each cofinitely reqular system is strongly reqular, and each strongly
reqular system is reqular.

Finally, we state the central result of the theory of CGDMS. Let Fin(I) denote the
family of all finite subsets of /. The following characterization of HD(Js), the Hausdorff
dimension of the limit set Jg, is a variant of Bowen’s formula. It was proved in [4] as

Theorem 4.2.13 for finitely primitive CGDMS, but the proof can easily be improved to
finitely irreducible CGDMS.

Theorem 3.7. If a CGDMS ® is finitely irreducible, that is, has an associated matriz A
which 1s finitely irreducible, then

HD(Js) = BP(®) = sup{HD(Jg|,) : F € Fin(I)} > 6(P).

It follows immediately from this theorem that if ® is regular, that is if P (¢) = 0 for some
t, then that t is the only zero of the pressure function P (t) and ¢t = HD(Jg). Moreover, a
system ® is strongly regular if and only if HD(Jg) > 0(®P).

Note also that the theorem is generally not true when there are overlaps, that is when
the OSC is not satisfied.

4. PRELIMINARIES ON DIFFERENTIABILITY

Throughout this section F denotes either R or C. Let also d > 1 be an integer and [ a
countable (either finite or infinite) set. For every F' C I we denote by P : (F%)! — (F%)F
the canonical projection from (F?)! onto (F¢)¥. For every point x € (F¢)! and every set
F C I set

Faer) = Prp(Pre()).

If the set F' is finite, then F(, r) is canonically isomorphic to F d#F) and is called the space
box of (F?)! generated by x and F. Recall that the box topology on (F¢)! has for a base
the set of all Cartesian products IL;c;U;, where each U;, i € I, is an open subset of F¢. A
function G : U — B from U, an open subset of (F%)! in the box topology, to a Banach
space B is said to be differentiable at a point x € U if its restriction to every space box
F(z,r) intersected with U, that is G| Fo.mnU, 18 differentiable at the point z. As usual, G is
said to be differentiable on a set V' C U if it is differentiable at every point of V. Analogous
definitions of C" differentiability (1 < r < 00), real analyticity, and complex analyticity
(that is, holomorphicity) when F = C, can be readily made. Note that due to Hartogs
Theorem, it suffices to consider singleton sets F' in the definition of complex analyticity.

5. REFINED PROPERTIES OF CONFORMAL MAPPINGS

We now turn our attention to conformal mappings in higher-dimensional spaces. Let us

fix an integer d > 3. For every z = (21, 29, . .., 24) € C? we define
d d

(5.1) 12017 :=) 27 and 2] == |2
j=1 j=1

Of course, in general |||z][|? is a complex number and is not the square of a norm. However,
- 1II?le = || - ||*|re and || - ||? are the squares of the standard Euclidean norms in R?
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and C%, respectively. It is also worth noticing that ‘|Hz|||2‘ < ||||? for every z € C¢. We

will often implicitly consider R? as naturally embedded in C?. Open balls in R? will be
denoted by B(z,r), while open balls in C* will be denoted by Bea(z,7). We denote by R
and C¢ the one-point (Alexandrov) compactifications of R and C?, respectively, obtained
by adding the point co. Recall that, given a € R? and r > 0, the inversion i,, : R — R¢
in the sphere centred at a and of radius r is given by the formula

(5.2) N

=r"—— +a.
|z — all?

We further set io o = Id. Obviously, 4, is an involution (that is, i%, = Id) which leaves
the sphere B (a, r) invariant, and a = i, (c0). Liouville’s Theorem (see [2, 10]) says that
each C' conformal homeomorphism ¢ defined on a connected, open subset of R? extends

to the entire space R and takes on the form
(5.3) o) =NAois,(z)+0,

where A > 0, A : RY — R? is a (linear) isometry, a € R?, r € (0,00] and b € R?. The
number \ is often called the scalar factor of o, and a = ¢~ !(c0) its center of inversion.
Note that for every x € R?, the scaling factor of the derivative ¢/(z) is given by the formula

Ar?

(5.4) ¢’ ()] = To—alE > 0.
For every a € RY, let

Z,=1{2€C*: |||z —al||* = 0}.
Clearly, Z, = a+ Zy. Notice that the inversion %, , extends to the open set @d\Za. Indeed,
for every z € C4\ Z,, set

, Z—a

IERTII

(5.5) Gar(2) +a.

The C' conformal homeomorphism ¢ : RY — R? therefore extends canonically to a map
from C%\Z, to C? by the formula

(5.6) o(z) =XAoig.(2)+Db.
The “scaling factor of the derivative” of this extension is defined as
Ar?
(5.7) ' (N = 3
|z = all?

Observe that this factor is generally a nonzero complex number.
We will later need the following result:

Lemma 5.1. If X is a compact subset of R and V O X is an open subset of R, then

dist(cd(X, U Za) > 0.
a€RNV
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Proof. Suppose on the contrary that distce(X,Uyera\yZa) = 0. Then there exist se-
quences (a™)>2, € RNV and ()%, C C? such that 2™ € Z ) for every n > 1 and
lim,, o distea (X, 2(™) = 0. Since X is compact, by passing to a subsequence if necessary,
we may assume without loss of generality that the sequence (2(™)%, converges to a point
r € X. Now, for every n > 1, we have

d
2
e = a®IIP = 32 = ) + (@ - af)
(5.8) =
= |||z —:c||12+22 ¥ — )y — alV) + |z — a™|2,

To shorten the notation, set A := dist(X,dV). Since (™ € RY\V and z € X, we have

(5.9) |z —a™|> > A% > 0.

Moreover, since lim,,_,. 2™ = z, there exists N > 1 such that for all n > N we have
1

(5.10) 12 — 2| < @min{l, A%}

So, for all n > N and those 1 < j < d such that |z; — a ] < 1, we have
(n) (n) 2
5.11 2z — x| - <2 — A
(5.11) 2 ] — ] < 202 — ] <
whereas for those j for which |z; — agn)| > 1, we get
n n n n 1 n
(5.12) 22" — 2| |2y — ) < 202" — 2| - |2y — ol < Sl — o™

I T Ad
Thus, using (5.8) — (5.12), we obtain for every n > N

d
12 = @[] 2 fla = o) = 120 2P =23 15" = ayl - |y — 05
j=1

d
1 1
> flo = a2 - 187 = = 3" max{A? o — a2}
j=1

1 1
> a™|? > ZA? > 0.
> e —a®|? >
Hence 2™ ¢ Z,) for each n > N, and this contradiction completes the proof. O

We will also need the following estimates:

Lemma 5.2. Let X be a compact subset of R? and V O X an open_subset of R4, Let
A = dist(X,0V) > 0 and A = A/(32d). Then for all (w,a) € Bea(X,A) x Bea(RAV, A)
we have
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Proof. Let (w, ) € B(cd(XiA) X Bea(RA\V, A) and take (z,a) € X x (R?\V) such that
(w, ) € Bea(x, A) X Bea(a, A). Then

= il

[l

llw = all[? + llz = all® + [lla - ol
- d

+23 75 [(wj —z;)(x; — aj) + (zj — a;)(a; — a;) + (w; — x;)(a; — ij)}
> o= al® = [lljw =2l = |llle - ol

d

=235 [|w]~ — | |y — a5 + vy — ay| - |y — o] + Jw; — 34 - |a; — 04j|]
> o= al? = Jw—z)? = la - af?

2w = all - = = || + |z = all - o — al| + w — 2]  ]a — o
> |z — al|? — 2A% — 2d[2A ||z — al| + A?]

4Ad .
> |z — a? (1 — —) —2(d+1)A?
A

7 2(d+1)||x — a)?
> —|lz—al?® -
> gle—ad 102442

3
> 2y — gll2
> Slle—al

Since

-1 1 ~
lz —af 2w = ol = llz = w|| = la —al| 2 [lw = af| =24 2 Slw - af| = (A -24) >0,

we conclude that

2 3 ,_ 3 -
- - — Zw—al? > (A -2A)2 > 0.
ik — il > 5 (1w —all) = 2w —af? > (&~ 247 > 0

O

Lemma 5.3. If X is a compact subset of R* and V' O X is an open subset of R, then
there exists a constant C(X,V) > 0, depending only on A := dist(X,0V) and d, such that
for all (z,a), (w, 8) € Bea(X,A) x Bcd(Rd\v A), where A := A/(32d), we have

Iz — af?

max{_ Mz —alll” _1’}
lw — B2 [[[w = BII?

<O(X, v>(||z—w||2+ lov = BI2 + 11z = wll + 1|2 = wll - la = B + fla = 51]).
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Proof. Let (z,a), (w, ) € Bea(X,A) x Bea(RA\V, A). Then
Iz = wlf® + [lo = B

+2370, Re[(zj —wj)(wj = ) + (2 — wy)(Bj — o) + (w; — 5;)(B; — aj)]
lw — B2

lz—al* _

lw — B2

4:
2= wl? + fla = I
+2d| | = wl| - w = Bl + |2 = wl - 18 = all + llw = B - 18 = o]
[ —BIP
_ @)l —wll? +lla — )
= +2d(8) 7 (llz = wll + (&) e = wll - o = Bl + lla = 811),
where A’ = A — 2A.

IN

Similarly,

Iz = wl|[* + [|la = B[
llz=all® _ +2370, [(Zj —w;)(wj — B) + (25 — w;)(B; — az) + (w; — B3;)(53; — %‘)}
Mw—mw“:

llw = Il

Iz = wll* + llo: = 5]

_ L el =l e = 80 =l 19 =l + o = 1118~ o]

N (3/16)[|w — BII?

_16 [ ()72 (llz = wl? + fla— 5?)

= 3| 20 (1wl + Q) = wll -l = B+ e = Bl1) [
where we have relied upon Lemma 5.2 to bound from below the denominator in the second-

to-last inequality. Simply take C(X,V) = (32/3) max{(A’)*Q,Gd(A’)*l max{1, (A’)*l}}.
U

We will also need a slightly different type of estimates:

Lemma 5.4. Let X be a compact subset of R? and V O X an open_subset of R, Let
A = dist(X,0V) > 0 and A := A/(32d). Then for every 0 < r < A and every couple
(2,a) € Bea(X,7) X Bea(RNV, ) we have

|z — ) _1‘ . Oddr

Iz =all® |7 3llz—all

Proof. Let (z,a) € Bea(X,r) x Bea(RA\V,r). Then
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wk_aw ‘ [z = all? = Il = al P
Iz = afl? ‘|||Z_a|||2
d — — d
_ 16|55 — 00)(5 — W) — S — )|
=3 == af?

< 3“2 a”gz‘zj 043‘ ) ( j_&_j>

aﬁigﬂZanaﬂ+umm»D
64dr

3z —all

Now, let
My = (0,00) x (0,00) x RY x R x SO(d) C RY,
where ¢ = 243d(d+3). Note that My is an open subset of RY. Given e = (A, 7, @, be, Ac) €
My, set (cf. formulas (5.3) and (5.4))

Ve = Ae Ae 0 0q, v, + be.
More generally, put
CMy := C\{0} x C\{0} x C* x C* x SO¢(d) C CY.

Observe that CM, is an open subset of C?, and for every e € CM, define ¢, again as above
(cf. formulas (5.5) and (5.6)).

Now, given X a compact subset of R? and V' O X an open subset of R, as well as s > 0,
let

Ma(X, V), = {e € M- a. € RNV and sup [ ()] < s}.
zeX

Our last goal in this section is to prove Lemma 5.7, which will later be used to “com-
plexify” the space of graph directed Markov systems. In order to prove it, we first establish
two preliminary lemmas.

Lemma 5.5. Let X be a compact subset of R* and V'O X an open subset of R?. Then
for every € > 0 and every e € My(X,V); there exists 6 = 6.(¢) > 0 such that if f €
Bea(e,6) N CMa, then [|of — pellx < e, where [lof — pellx = sup,cx [[of(2) — @e(@)]-

Proof. Fix e € My(X,V); and 0 < ¢ < min{1,1/(4C(X,V))}, where C(X,V) is the
constant arising from Lemma 5.3. Set A := dist(X,0V) and A := A/(32d). Take

in{A, 1}
§ = emin{ (V2 — 1) min{, re, 1 min{A, .
amln{(\/_ Jmin{A., 7, }’48max{)\e,/\ 212 ol + Low (el + D}

e’ e’




If f € Bea(e,d) N CM,, then one can show that the following conditions are satisfied:

c ~

1 —q) <min{ —° A
(5.13) oy —acll < mm{lﬁ(l +3d)’ }
(5.14) by —bell < 7.
(5.15) HAfr;Af Al < Al
(5.16) H)\fAfaf — AeAeae|| < Z
and
(5.17) Ml PIASIN < 2202 (| Acll = 22er2.

Since ||as — ac|| < A, it follows from Lemma 5.2 that
Xr — af
gof(x) = )\fAf(T’Z— + CLf) + bf
Mz — agl]]?
is well defined for all x € X. Then for all x € X we have
() = pe()]]

(Afrj%Af = AJ?A@> e + AfrJ%Af<H ea; _ _z-a )

lz—agll*  [lz—aell?

+(ApAfas — AeAcac) + (by — be)

_ T —ay T — Qe
< o= acl A3 A = Ar2Acl + gl PlA | - |
e Pl = agllP e = acl?
+||)‘fAfaf - /\eAeaeH + ||bf - be”
2 2
. [l = aclP@ = ap) = e = asliPe = a)|| . -
< ATAL+ Il PlA +2+2
lle = aglIP|llz = acl?
!
2 2
3 e = acl?@ = ap) = llle = asl Pz — a.)
< T+ Wl PlAy : :
[l = aglll2lle = ac |
where we used (5.14), (5.15) and (5.16). Now
e = acl?@ = ap) = lllz = asl (@ — a.)
(5.18) = |[lz = aclP(a. = ap) + (I = a.|* = |lle = afl )@ = a)
< llae = agll - o = acl® + 1o = acl|llz = acll® = llla = al|12|

13



14 MARIO ROY AND MARIUSZ URBANSKI

Furthermore,

lz = acll* = lll= — ayl||*

(5.19) - ’;@fj ~ ;) ((l‘a‘ —ag) + (25 - aej))(

< dllay — acll(Jl = agll + | — ac).
In virtue of (5.13) and Lemma 5.3 (recall that 0 < e < min{1,1/(4C(X,V))}), we have

Nz —ay|?

1 file = asli?
25 Je—adpP

Combining this with (5.18) and (5.19), we get

IA
l\D'I w

e = alp@—ap) = [lla = sl — a.) lag—af o= acll (I = agll + 1z ~ ac])
< +
[l = agl ]z = a.? [l = a2 [l = aglP[llz = .|
lay — al| 3|z — ag|
S +dHaf—aeH
(1/2)[z — a2 (1/2)]|z — a|?
lay — a|
2(1 + 3d) L L el
|z — a|?

Since ||, ()] < 1, we get from (5.4) that A\r? < ||z — a.||?. Using this, (5.17), the above
inequality and (5.13), we deduce that

e = aclP@ = ap) = lll = asl P2 — a.) las — al

[l = acll?

IAgllrs 1A 2012 - 2(1 + 3d)

llz = agl P [llz = a.?

= 4(1+43d)|lay — a|]| <e/4.

We thus conclude that ||¢s(z) — ¢e(2)|| < . Since this is true for every x € X, we deduce
that ||¢or — ¢cllx < e. Finally, because f was chosen arbitrarily in Bea(e,d) N CMy, the
proof is complete. O

Here is the second preliminary lemma.

Lemma 5.6. Let X be a compact subset of R and V. O X an open subset of RY. Fix
s € (0,1]. Then for every € > 0 there exists v > 0 such that for all e € My(X,V)s there is
§ = 0. > 0 such that if f € Bea(e,0) NCMg, then [|@}(2)|| < (1+¢€)s for all z € Bea(X, 7).

Proof. For every g € CMy and every z € (Cd\Zag define the matrix (g;;(2))1<i j<a by the
formula
(zi — ag,)(z; — agj)
Iz = agl||?

Y

gij(2) =

where, to allege notation, a4, := (a4); denotes the i-th component of a,. Let € € (0,1/2).
Let £ € (0,¢] be such that (14 £)%(1 —&)7}(1 +12d¢) < 1 +e. Let A := dist(X,9V) and
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take 0 < r < 3A&/(128d) such that, according to Lemma 5.3,
Iz — aff?

= = allf? ‘} ~
5.20 max { |27 TN L s 0
(5-20) {Mw—mw o =3I /

for every (z,a),(w,3) € Bea(X,7) X Bea(RA\V,r). Since 0 < r < A = A/(32d),
Lemma 5.4 gives

|z — ) 64dr 64dr 128dr
—1| <L < < <
“3llz—a] T 3(A-2r) — 3A —
for every couple (z,a) € Bea(X,r) X Bea(RAV, 7).

Now, let e € My(X,V),. Take 0 < 6 < r such that if f € Bga(e,d) N CMy, then
Aellr? < (14 &)Aer? and [[Ap|] < (14 8)||Acll = 1+ . Let f € Bea(e,d) N CM,. Fix
1 <i,7 <dand z € Bea(X,r). Then there exists x € X such that ||z — z|| < r. We
thereafter have

F(2) = @) = |((@ = aa)l@s = ae) = (5= ag) (5 = ap) ) Iz = |~
+(lle = @l = 11z = asll72) (2 = az) (5 — ay)

< lz = aell 7| (2 — ae) (@) — ae,) = (2 — ap,)(z — ay,)

(5.21) .

Iz = fl]”

2 = agl2|le = ael =2 = 111z = agl |||
< o= a2 (i = ae) (a5 = 25) + (ag, = a.,)) + (25 = a,) (05 = 20) + (ay, = a.,))
2= agl? 2= oyl
+ 2 2
le=acl? ™ Tz = all

< o= a2l = acll (llz = 2l + llag = acll) + 11z = all (ke = 21l + oy — acll)]

Iz — arl® |z — arl®

+

—1 —1
17— adP '* ‘

< o= a2l = acll + Iz = agl)) (r+ 11 = ell) + 22,

Iz = azl?

where we successively used (5.20) with a = ay, w =z and § = a., and (5.21) with o = ay,
keeping in mind that a, € R\ V since e € My(X,V),. Since § < r and f € Bea(e, §)NCM,,
we obtain

Fis(2) = (@) < v = acll 2 (llz = acll + 11z = agl) - 2r + 22,
Using (5.20) again, we deduce that
Fiz) = @) <l = a2 (llz = all + 2w — a]) - 2r + 22
= 6rf|x —a.| '+ 28 < 6ATIr 28 < 38,
Since the above argument is in particular valid with f replaced by e, we have

1£i5(2) = e (2)] < |Fig(2) = é3;()| + |é () — é(2)| < 6&.
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Hence ||f — é| < 6dé. Now, the derivative matrix @;(2) of @y, written as the matrix
of partial derivatives in complex coordinates at a point z € C¢, is equal to /\frj%|||z —
ag|||72A(Id — 2f)(z). By our choice of § we have [Af||rs|> < (1 + &)Ar? and ||Af|| <
(14 &)||Ae|| = 1+ & Moreover, ||(Id — 2f) — (Id — 2¢)|| = 2||f — é|| < 12d. Using once
again (5.20) as well as the above estimates, we get
leh (Il < (X+)Arg - (1=8) o —ac[| - (1 +€) - (1 + 12d8)
< (T4 e)Aer?||r — a2 < (1 +¢)s.

Since this is true for every z € Bea(x,r), the result follows. 0

Now, given two compact subsets X;, X5 of R?, two open subsets V;, V5 of R? containing
X7 and X, respectively, and s € (0, 1), we denote by Ry ((X3, V1) ; (Xs, Vs)) the subset of
M, consisting of all e such that

(5.22) we(X1) C Xy, (V1) C Vo
and
(5.23) sup{||¢.(@)]| : © € X1} <s.

Note that Ry((X1, V1) ; (Xa, V2)) C Ma(X1, Vi)s. We define analogously the complex subset
Co((X1, V1) ; (Xo, V3)) of CMy, requiring this time that the X;’s be compact subsets of C?
and that the V;’s be open subsets of C?, each containing the corresponding X;.

Lemma 5.7. Suppose that X, and X, are compact subsets of RY, and that V; and V,
are open subsets of R containing X, and X, respectively. Fiz s € (0,1).~ Then there
exists a constant R = Ry((X1,V1); (X2, V2)) > 0 such that for every 0 < R < R, each

e € Ry((X1,V1); (X2, V2)) admits 6.(R) > 0 such that

Bea(e, 6.(R)) NCMy C Cupa ((ECd(Xl, R), Bea(X1,2R)) ; (Bea(Xo, R), Bea(Xo, 2R))).

Proof. Apply Lemma 5.6 with X = Xy, V' =V and € > 0 so small that

1
(1+&7)5§S;L :

Let » > 0 be the corresponding number mentioned in that lemma. Fix an element e €
R (X1, V1); (Xa, Va)) C My(X1,V1)s and denote by 6.1 > 0 the corresponding number §
produced in Lemma 5.6. The lemma then asserts that

s+1
(5.24) ()l < 25

for all z € Bea(Xy,r) and all f € Bea(e,0e1) N CMy. Now, fix 0 < 7 < r and apply
Lemma 5.5 with

1—s
= T

4
Denote the resulting § > 0 by d. (7). Lemma 5.5 then states that

1—s_
(5.25) lor = eellx, < =27

€
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for all f € Bea(e,de2(7)) NCMy. Now, set 0.(7) := min{d 1, d.2(7)}. Consider an arbitrary
radius n € [/2,7] and take any point z € Bea(X7, 7). Then there exists © € X; such that
|z — || <n. Using (5.24) and (5.25), we get that for all f € Bea(e,6.(7)) N CM,

lor(z) —pe@)| < lor(z) = @) + llor(@) = @e(2)]
s+1 1—s s+1 1—s

5 |z — x| + 1 T < 51+ <.
Since p.(x) € Xo, we deduce that ¢s(2) € Bea(X2,n). Consequently, ¢r(Bea(X1,n)) C
Bea(X2,m) and ¢ (Bea(X1,1)) C Bea(Xa,7). Looking at the first of these inclusions with
n =7/2, at the latter one with n = 7, and considering (5.24), we conclude that

Bea (6, 56(7:/2)) NCM,; C C% <(§Cd(Xla f/Q)v B(Cd(XI’ 7:)) ) (F(Cd(XQa 7:/2)’ B(Cd(X27 f)))

<

Setting R = 7/2 and R = 7#/2 completes the proof. O

6. ANALYTICITY OF PERRON-FROBENIUS OPERATORS

Throughout this section d > 3. Fix a countable (finite or infinite) set I and an incidence
matrix A : I x I — {0,1}. Fix also E € M} C (R?%)! such that ®p = (g, )icr is a WPO
CGDMS with incidence matrix AEZ.1 B, = Ai iy, a finite vertex set Vg, and corresponding
pairs (X,, W,), v € Vg. Denote the common contraction rate by s = sg € (0,1). Put

R = inf{Rs((Xto(Ei)a Wioey)) i (Xinz)s Win(s,))) 11 € I} > 0,

where the number R,((Xio(g,), Wio(r,)) i (Xin(e,), Win(e,))) > 0 results from the application
of Lemma 5.7 with X = X;,g,), V = Wiy, and s = sg. Note that the number Rp is
positive since it is the infimum of a finite set of positive numbers. Set also

Iy, = Bes (E 5Ei(RE)) nCM,

for each i € I, where each number ég,(Rg) > 0 results from the application of Lemma 5.7
with X = X)), V = WigE,), s = sg, and e = E;. In view of Lemma 5.7, for each D €
;e Tg, the collection ®p = (pp,)icr € (CMy)! C (C9)! forms a hyperbolic GDMS with
contraction rate less than or equal to (s + 1)/2, the same set of vertices Vg, corresponding
pairs (Bea(X,, Rg), Bea( Xy, 2RE)), v € Vi, and the “same” incidence matrix generated by
AT x 1 —{0,1}, that is, Ap, p,, = Aii,-

However, the ®p’s are not WPO CGDMSs because they are not conformal in general.
Nevertheless, since CM, is open in C?, the set I;c;T's, C (C9)! is open with respect
to the box topology. Observe also that ITic;(T'g, N My) C (R9)! is open because My
is open in R? and that if D € Il;c;(I'g, N M), then ®p restricted to the generating
pairs (B(X,, Rp), B(X,,2RE)), v € Vg, is a WPO CGDMS. For every D € Il;ic;I'g,, the
coordinate projections i — D; induce the mapping w — wp = D, D, Dy, ... € {D; : i €
I} defined on I¥. Note also that we will sometimes slightly abuse notation. For instance,
we will shorten the notation for the coding maps from 7, to mp. Our first result in this
section is the following;:

Proposition 6.1. For every w € I the projection map D +— 7p(wp) € C4, D € Wi/ Ty,
18 holomorphic.
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Proof. For every v € Vg fix a point z,, € X,,. Then for every D € Il;c;I'g,, we have
(6.1) p(wp) = 1im @up), (Tro(wn))-
n—oo

Now, let U be the intersection of I;c;I'g, with some space box. Because of (5.6) and the
first part of (5.1), for every n > 1 the mapping D — ¢, |, (Zio(w,)), D € U, is holomorphic.
Since the ranges of these maps are bounded (in fact, contained in U,ey, Bea( Xy, RE)), we
conclude that the sequence of maps D — @, |, (Zio(w,)), 7 > 1, is normal. Consequently,
all its limit points are holomorphic functions. Thus, D +— 7p(wp) = limy, 0o Qupl, (Trown))
is holomorphic.

Furthermore, we have the following property.

Lemma 6.2. The family of projection maps {D + mp(wp)}werg is equicontinuous at the
point E.

Proof. Fix € > 0, and for every i € I take & > 0 so small that Bed(E;, &) C 'y, and
that according to Lemma 5.5 (applied with X = Xy,(z,), V = Wiog,) and e = E;) we have

Xto(By) : f € ch(Ei7£i>} <e.

sup{[|vs — ¥,
For every n > 1, set
An = Sup{“()Ou)Dln - SOUJE‘TLHXtO(W’n) : D € H’iEIB(Cq(E’i7€i)7w € [20}7

and observe that A, < vd(max{diam(X,) : v € Vg} + 2Rg). For every n > 1, every
D € Ilic;Bea(E;, &), every w € I and every € Xy, ), we have

”90 | (I) — ¥ \ (J})H - <¢wD|n(¢(wD)n+1(l’)) - SOwD\n(QO(wE)nH(:E)))

+ (ool Pomnn (@) = Puly (P @)

s+ 1\
< (55) 10t @) = Pl @)+ B
s+ 1\"
< ( 9 ) ‘|90(wD)n+1 _SO(WE)n+1|’Xto(wn+1) + A,
I\"
< (s+ ) e+ A,.
2
Therefore
I\"
An-‘y—l SATL_'_e(S; ) .

Thus, by induction,

s+ 1\J /s 1\ £ 2e
Bz 2 ) =<3 ( 2 ) IS R
0

Jj=1 Jj=

Applying (6.1), we obtain that ||[7p(wp) — me(wg)|| < 2¢/(1 — s). Since € > 0 was chosen
arbitrarily, the family {D +— 7p(wp)}uer is equicontinuous at E. O
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Now, for every w € I define the function v, : [I;c;I'y, — C by
_ M¢wp), (mplowp )]
[Pl (TE(0wn))l

where ||| (2)]|| was defined in (5.7), while ||, (z)]| is the scaling factor of ¢, given in (5.4).
Note that it follows immediately from Proposition 6.1 that each function ¥, w € I, is
holomorphic. Moreover, we have the following.

(6.2) Yu(D) :

Lemma 6.3. For every i € I there exists p; > 0 such that Bed(Ey, p;) C T'g, and
1
|¢w(D) - 1| < 5
for allw € I and all D € 11 Bea(Fs, p;).

Proof. This lemma is a direct consequence of (5.4), (5.7), Lemma 5.3 and Lemma 6.2.
O

Now, let log : Bc(1,1/2) — C be the branch of the logarithm determined by the require-
ment that log1 = 0. With p; as specified above, for every D € Il;c;Bcq(E;, p;) and every
we IP, set
(6.3) (D) = log b, (D) + log [| (), (Te(owE) ]

Fix ty > 0(®g), where (P g) is the finiteness parameter of the WPO CGDMS ®5. Aiming
to apply Theorem 2.5, we shall now prove the main result of this section:

Lemma 6.4. For every (t,D) € {¢ € C : Re(§) > to} X erBea(Ey, pi) we have that
t¢)(D) € Kesa. Moreover, the function (t,D) — L () € L(H%.,), (t,D) € {£ € C:
Re(§) > to} x IierBea(Ei, pi/2) is holomorphic.

Proof. Fix (t,D) € {{ € C : Re(§) > to} x ILierBea(E;, p;). Since, by Lemma 6.3,
|log 1.y(D)| is uniformly bounded by log(3/2), summability of the potential ¢{(.,(D) follows

immediately from the choice of .
We shall now check that the function t{.)(D) € Hopa. In view of (5.7), for all w, 7 € I

with w; = 7, we have

|66 (D) =t (D)] = ||

10g<m7TD(UWD) - GDH\Q)‘ |

llmp(o7p) — apl|f?

where ap := @), = G(rp),- Thanks to our choice of the I'g,’s and because Bea(E;, p;) C

['g, for each i € I, we can apply Lemma 5.3 with X = Xiyg,,) 2 me(owr), V = Wiys,,),

z = mp(owp), w = wp(o7p), and a = = ap. With C; := max,ey, C(X,, W), Cy :=

max{diam(X,) : v € Vg} + 2Rp and C5 := max{diam(X,) : v € Vg}, it follows that
llmp(owp) — apll]*
llmp(op) = apll[*

1\ < Cymax{ |mp(own) — 7o(omo) [ [7o(own) — mp(om)||}

< C1Gsy||mp(owp) — mp(oTp)||

s+ 1) |wAT|—1

< C10,C5 <
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Thus, there exists a constant Cy > 0 such that

s |wAT|
(6.4) |t§T(D)—th(D)|§C4|t\( “) .

So t(.y(D) € Hag1, and in consequence t(y(D) € K. On the other hand, it follows

immediately from Proposition 6.1 that for every w € I¥, the function D — 1,(D) is
holomorphic, and consequently (¢, D) — t(, (D) € C, (t,D) € {£& € C : Re(§) > to} x
I;c; Bea(E;, pi), is holomorphic. In view of Theorem 2.5 and Hartogs Theorem, in order
to complete the proof, it suffices to demonstrate that the function (t,D) — t(.\ (D) €
K =1, with (t, D) in a one-dimensional space box neighbourhood of (¢y, F), is continuous.
Obviously, this function is continuous with respect to the variable . So, we may assume
that ¢ is fixed and D is a one-dimensional space box neighbourhood of I1;c; Beq(E;, p;), say
D € Be(b, p;) for some fixed i € I and some component b of E;. Fix w € IF. Since the
function D — log 1, (D) is holomorphic and bounded in modulus by log(3/2) on Bc(b, p;),
and satisfies log ¢, (E) = 0, its Taylor series expansion on Bc(b, p;) takes on the form

(6.5) log ¢..(D Z an(w

and from Cauchy’s estimates
|an(w)| < pi"log(3/2).
Hence if F' € Be(b, pi), then

1Og¢w(F> - 1Og ww(D> =

WE

an(@) ((F =) = (D —v)")

n

an(W)(F = D)y (F—=b)""7(D—b)

Il
—_

n

(6.6)

|
—

I
NE

n

Il
—
.

Il
=)

Consequently, if D, F' € B¢(b, p;/2), then

00 n—1
[log 1, (F) —log u(D)| < Y pi"10g(3/2)|F = DIy | |F —b""'~/|D — bl

n=1 7=0
n—1

<log(3/2)|F - DI " 3/ 2
n=1 7=0

— log(3/2)p] (an (n— 1)|F D|.

It then follows from (6.3) that

(6.7) 4G (F) = 1€y (D) o0 < log(3/2)ltlo; (3 n2~)|F = DI,

n=1
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Now, fix w, 7 € I with w; = 1. It follows from (6.3) and (6.4) that
s+ 1) |wAT|

llog (D) — log1,(D)] < Ci (

Combining this with (6.5), Cauchy’s estimates yield

[wAT|
nl) - )] < G (51)
So, if D, F' € Be(b, p;i/2), we get using (6.6) that

|(10g - (F) ~ log (D) ) = (log v (F) ~ Tog (D))

n—

= |Y(@u(r) — au(@)(F = D) Y (F ~ by~ (D - by’

o0 s+ 1 |wAT|
§O4p;1(zn2—<“—l>)|F—D|< : ) .

n=1

<

(6.8)

Now, given a function g : I¥ — C we denote (as the reader will recall) by vs(g) the s-
variation of g, that is, vs(g) := sup{|g(w) — g(7)|/s" : w|, = T|a}, and by ||g||s the s-norm
of g, namely ||g]|s := [|g]|co + vs(g) (cf. section 2). Then it follows immediately from (6.8)
that

UVs+1
2

(108 ) (F) = log (D)) < Cp;” (fj n2 ") |F - DJ,
n=1

and consequently

e (160(F) — 16,(D)) < Callr (3o n2- )1 = D).

n=1

Together with (6.7), this yields

1 < <o4 + 1og(3/2)) It 7! (Z n2*<"*1>) IF— D.
n=1

[£¢e) (F) =ty (D)
Thus the proof of continuity is complete and we are done. O

7. REAL-ANALYTICITY OF HAUSDORFF DIMENSION

Sticking to the same framework as in the preceding section, d > 3, I is a countable
(finite or infinite) alphabet and A : I x I — {0,1} an incidence matrix. Fix F € M} C
(R9)! such that ®p = (pg,)icr is a strongly regular WPO CGDMS with a finite set of
vertices Vg and corresponding pairs (X,, W,), v € Vg. To each element D € Il;c/I'g,,
ascribe uniquely a hyperbolic GDMS & = (¢p,)icr € CMI C (C%)! as in the previous
section. Recall that if D € I;cr(I'g, N My), then ®p restricted to the generating pairs
(B(X,, Rg), B(Xy,2REg))vev, is a WPO CGDMS. Moreover, the limit sets of the restricted
and unrestricted systems ®p are the same and contained in R¢. The first result of this

section is the following.
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Theorem 7.1. For every i € I there is R; > 0 such that the function D — BP(®p),
D € 1,/ B(E;, R;), is real-analytic.

Proof. For every t € C with Re(t) > 6(®g) and D € ILi/I'g, put L, p = Lic.,(p) €

(Hﬁl) Fix a space box U C Cx1l;crBeq(Ey, pi/2) containing (to, E) (with p; is as defined
in Lemma 6.3). Apply Lemma 6.4 with ty = tg := BP(®g) > 0(Pg) (the strict inequality
holds since ®p is strongly regular). In view of that lemma and Theorem 2.4, Kato-Rellich
perturbation theorem applies and yields R; € (0, p;/2] (in fact, R; = p;/2 except for finitely
many ¢ € [) and a holomorphic function A : U N (C x IL;¢;Bee(E;, R;)) — C such that
Mtg, E) = eP#(#) and such that (¢, D) is a simple isolated eigenvalue of the operator
Lip: H5+1 — H a1 with the remainder of the spectrum separated uniformly from A(¢, D).

In partlcular, decreasmg R; > 0 appropriately, there is n > 0 such that
(7.1) o(Lyp) N Be(e Pe(te) ,n) ={At, D)}

for all (¢, D) € U, where o(L; p) denotes the spectrum of £; p. Since e p(*) is the spectral
radius 7(L; p) of the operator £, p for all (¢, D) € UN(Rx M), in view of the semicontinuity
of the spectral set function (see Theorem 10.20 on page 256 in [8]), by taking R;’s sufficiently
small we also have that 7(L;p) € [0,e2(!8) + ), and along with (7.1) this implies that
At, D) = ePP® for all (t,D) € UN (R x M}). Consequently, the function (¢, D) — Pp(t),
(t,D) € UN (R x M}), is real-analytic. Since Pg(tg) = 0 and since

opP
ot

— [ 108 ¢ty (me(we)ldnse) < o

(te,E)

where pp is the Gibbs (equilibrium) state of the potential w — tglog|¢,, ), (TE(owE))],
it follows from the implicit function theorem that, with appropriately smaller R;’s, there
exists a real-analytic function t : U — R defined on U the projection of U onto the set
I;e; B(E;, R;), such that ¢t(F) = tg and Pp(t(D)) = 0. Hence t(D) = BP(®p) and we are
done. O

As an immediate consequence of this theorem and Bowen’s formula, we obtain the fol-
lowing;:

Theorem 7.2. Suppose that the incidence matriz A : I x I — {0, 1} is finitely irreducible
and that ®g is a strongly reqular CGDMS. If with R;, i € I, as in Theorem 7.1 or smaller,
all the systems ®p, D € ;1 B(F;, R;), satisfy the OSC, then the Hausdorff dimension
function D — HD(Js,), D € ;1 B(E;, R;), is real-analytic.

Remark 7.3. Suppose that the incidence matriz A : I x I — {0,1} is finitely irreducible
and that ®p = (¢g,)icr i a strongly reqular CGDMS. If ®g satisfies the super strong
separation condition, that is, if for every i € I

@Ei(Xto(Ei))ﬂ U vr;(Xiom;)) = 0,
jenfi}

then by proceeding inductively with respect to a good order on I, we can construct R; €
(0,00) such that for each D € 1;e;B(E;, RY), the system ®p also satisfies the super strong
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separation condition. In particular, each such ®p satisfies the OSC and Theorem 7.2 applies
to that family of systems.

[1]
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