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Abstract. In this paper we prove that the Hausdorff dimension function of the limit
sets of strongly regular, hyperbolic, conformal graph directed Markov systems living in
higher dimensional Euclidean spaces Rd, d ≥ 3, and with an underlying finitely irreducible
incidence matrix is real-analytic.

1. Introduction

In this paper we deal with the problem of regularity of the Hausdorff dimension function
of the limit sets of strongly regular, hyperbolic, conformal graph directed Markov systems
living in higher dimensional Euclidean spaces Rd, d ≥ 3, and whose underlying incidence
matrix is finitely irreducible. The foundations of the theory of hyperbolic, conformal graph
directed Markov systems were laid in [4]. This theory extends that of hyperbolic, conformal
iterated function systems developed in [6]. Extensive research in this field has been done
before. As we are mainly interested in this article in regularity properties of the Hausdorff
dimension function, we would like to bring to the attention of our readers article [7], in which
we explored the continuity of the Hausdorff dimension in the general case (d ≥ 1), as well as
papers [7] (sections 6 and 8), [1] and [3], where the problem of regularity of the Hausdorff
dimension was treated in the complex plane (case d = 2), under the assumption that
the generators of the systems are holomorphic. In [3] the real-analyticity was established
under weaker assumptions (to our knowledge). In the present paper we go beyond the
plane by investigating the case d ≥ 3. In this case, the conformal generators of the systems
are not analytic (unless they are affine), but in view of Liouville’s Theorem (see [2], for
instance) they all take on the same canonical form. This enables us to parametrize the
space Md of such maps by q = 2 + 1

2
d(d+ 3) real parameters, and thereafter define natural

notions of differentiability and real-analyticity on the space (Rq)I , where I is a countable
set. In our framework I is the alphabet of the graph directed Markov systems. Our main
result, Theorem 7.2, asserts that the Hausdorff dimension function is real-analytic when
this function is restricted to an open subsetW of (Rq)I corresponding to a family of strongly
regular, hyperbolic, conformal graph directed Markov systems with a common alphabet I,
a common finitely irreducible incidence matrix and which satisfy the open set condition.
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The main idea of the proof is to ascribe canonically to each graph directed Markov system
Φ its complexification Φ̂ acting on Ĉd. This complexification is no longer conformal (with

respect to the Euclidean metric on Ĉd) but it permits us to define a holomorphic extension
of the normalized derivatives of the generators of Φ (see (6.2)). With the help of this
extension we define the family of Perron-Frobenius operators associated to the family of
complexified systems. These operators constitute a holomorphic family (see Lemma 6.4).
This fact and the quasi-compactness property of these operators allow us to apply Kato-
Rellich perturbation theorem to conclude that the corresponding pressure function is real-
analytic. It then follows from the implicit function theorem that the only zero of this
pressure function, which we call Bowen’s parameter, is real-analytic throughout W (see
Theorem 7.1). It is important to note that in order to come to this conclusion we do not
require that the open set condition be fulfilled. Whenever this latter is satisfied, a variant
of Bowen’s formula (see [4]), which identifies the Hausdorff dimension of the limit set of a
conformal graph directed Markov system as the zero of the pressure function, permits us
to conclude that the Hausdorff dimension function coincides with Bowen’s parameter and
thus is real-analytic (see Theorem 7.2). It is also worth pointing out that this fact was
unknown until now even when the underlying alphabet I of the systems is finite.

2. Preliminaries from Thermodynamic Formalism on Symbol Spaces

In this section we collect the fundamental ergodic (thermodynamic formalism) results
in one-sided symbolic dynamics. All of them can be found with proofs in [4], [5] or [9].
Let I be a countable set and let A : I × I → {0, 1} be a matrix, often called incidence
matrix. A finite or countably infinite tuple (commonly called word) ω of elements of I is
called A-admissible if Aab = 1 for any two consecutive elements a, b of ω. The matrix A is
said to be finitely irreducible provided that there exists a finite set F of finite A-admissible
words such that for any two elements a, b of I there is a word γ in F such that the word
aγb is A-admissible. Throughout the entire section the matrix A is assumed to be finitely
irreducible. We denote the set of all countably infinite A-admissible words by

I∞A = {(ωn)∞n=1 ∈ I∞ : ∀(n ∈ N), Aωnωn+1 = 1}.

Obviously I∞A is a closed subset of I∞ when this latter is endowed with the product topology,
and we equip the former with the topology inherited from the latter. We further denote
by InA the set of all A-admissible words of length n ≥ 1, and by I∗A the set of all finite
A-admissible words. Recall that the left shift map σ : I∞ → I∞, which by definition drops
the first entry of ω, is defined by the formula

σ
(
(ωn)

∞
n=1

)
= (ωn+1)

∞
n=1.

This shift is clearly continuous, and of course σ(I∞A ) ⊂ I∞A . Given ω ∈ I∗A we denote by |ω|
the length of ω, that is, the unique n ≥ 1 such that ω ∈ InA. If ω ∈ I∞A and n ≥ 1, then we
will use the notation

ω|n := ω1 . . . ωn.

We will also denote the empty word by ε and declare that its length is 0. For ω, τ ∈ I∞A ,
we define ω∧ τ ∈ I∞A ∪ I∗A∪{ε} as the longest initial subword common to ω and τ . Finally,
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for every finite A-admissible word ω = ω1 . . . ωn, set

[ω] = {τ ∈ I∞A : τ |n = ω}.
The set [ω] is called the cylinder generated by ω.

Let us now talk about functions, also called potentials, on I∞A . Given s ∈ (0, 1), recall
that a function ψ : I∞A → C is s-Hölder continuous if

vs(ψ) := sup
n≥1

vs,n(ψ) <∞,

where

vs,n(ψ) = sup

{
|ψ(ω)− ψ(τ)|

sn
: ω, τ ∈ I∞A and |ω ∧ τ | ≥ n

}
.

We will denote by Hs the set of all s-Hölder continuous functions on I∞A . Recall also that
a function ψ : I∞A → C is said to be summable if∑

i∈I

exp
(
sup
(
Reψ|[i]

))
<∞.

We henceforth denote by Ks the set of all s-Hölder continuous, summable functions.
Now, let ψ : I∞A → C be a continuous function. Let also Mσ denote the set of all shift-

invariant Borel probability measures on I∞A . A measure µ ∈Mσ is said to be a Gibbs state
for ψ provided that there are constants C ≥ 1 and P ∈ R such that

(2.1) C−1 ≤ µ([ω])

exp(ReSnψ(τ)− Pn)
≤ C

for all n ≥ 1, all ω ∈ InA and all τ ∈ [ω]. Note that if ψ has a Gibbs state, then ψ is
summable. The topological pressure P(ψ) is defined as follows:

P(ψ) = lim
n→∞

1

n
log
∑
ω∈In

A

exp
(
sup
(
ReSnψ|[ω]

))
.

It follows from (2.1) that if ψ admits a Gibbs state, then P = P(ψ). The proofs of the
following two fundamental results can be found in [4], [5] or [9].

Theorem 2.1. (Existence and Uniqueness of Gibbs States) For every Hölder continuous,
summable potential ψ : I∞A → C there exists a unique Gibbs state µψ on I∞A . Furthermore,
this state is ergodic.

Theorem 2.2. (Variational Principle) For every Hölder continuous, summable potential
ψ : I∞A → C we have

sup

{
hµ(σ) +

∫
I∞A

Reψdµ : µ ∈Mσ and

∫
Reψdµ > −∞

}
= P(ψ) = hµψ(σ)+

∫
I∞A

Reψdµψ

where µψ is the unique Gibbs state for ψ, and is the only measure at which the supremum
is taken on.

Any measure that realizes the supremum value in the above variational principle is called
an equilibrium state for ψ. With this terminology, Theorem 2.2 can be reformulated as
follows.
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Theorem 2.3. If ψ : I∞A → C is a Hölder continuous, summable potential, then the unique
Gibbs state µψ for ψ is the unique equilibrium state for ψ.

We will in a moment define the Perron-Frobenius operator Lψ : Cb(I
∞
A ) → Cb(I

∞
A ), where

Cb(I
∞
A ) represents the space of all bounded, continuous complex-valued functions on I∞A .

But first, given i ∈ I and g : I∞A → C, define the mapping g ◦ i : I∞A → C ∪ {−∞} by the
formula

g ◦ i(ω) =

{
g(iω) if Aiω1 = 1
−∞ if Aiω1 = 0

if g ∈ Ks, and

g ◦ i(ω) =

{
g(iω) if Aiω1 = 1
0 if Aiω1 = 0

otherwise. Now fix ψ ∈ Ks and notice that for every g ∈ Cb(I∞A ), the operator

Lψ(g) =
∑
i∈I

eψ◦ig ◦ i

is well defined (with the convention that e−∞ = 0, 0 · (−∞) = 0 and −∞− (−∞) = 0),
belongs to Cb(I

∞
A ) and ‖Lψ(g)‖∞ ≤

∑
i∈I exp

(
sup(Reψ|[i])

)
‖g‖∞. We have thus defined

the operator Lψ acting continuously on Cb(I
∞
A ) with

‖Lψ‖∞ ≤
∑
i∈I

exp
(
Re sup(ψ|[i])

)
<∞.

In fact, as proved in [4], Lψ preserves the Banach space Hb
s := Hs∩Cb(I∞A ) when this latter

is endowed with the s-norm, namely ‖g‖s := ‖g‖∞ + vs(g), where g ∈ Hb
s. The operator

Lψ is called Perron-Frobenius operator. As an immediate consequence of Theorem 2.4.6
from [4], we get the following:

Theorem 2.4. If ψ ∈ Ks, then eP(ψ) is a simple isolated eigenvalue of the Perron-Frobenius
operator Lψ : Hb

s → Hb
s.

One of the key facts needed to prove the real analyticity of Hausdorff dimension is
Theorem 3.8 from [3]:

Theorem 2.5. Let Γ ⊂ C be an open subset of C, and suppose that the function γ 7→ ψγ ∈
Ks, γ ∈ Γ, is continuous. If the function γ 7→ ψγ(ω) ∈ C, γ ∈ Γ, is holomorphic for every
ω ∈ I∞A , then the function γ 7→ Lψγ ∈ L(Hb

s) is also holomorphic.

3. Selected Facts about Graph Directed Markov Systems

In this section we begin our study of graph directed Markov systems. Let us recall the
definition of these systems (see also [4]). Graph directed Markov systems are based upon
a directed multigraph and an associated incidence matrix, (V, I, in, to, A). The multigraph
consists of a finite set V of vertices and a countable (either finite or infinite) set of directed
edges I and two functions in, to : I → V . For each edge i ∈ I, in(i) is the initial vertex of
that edge and to(i) its terminal vertex. The edge goes from in(i) to to(i). Also, an incidence
matrix A : I × I → {0, 1} is given. That matrix is an edge incidence matrix: it determines
which edges may follow a given edge. And it does so while respecting the multigraph, that
is it has the property that if Auv = 1, then to(u) = in(v). We will consider finite and
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infinite walks through the vertex set which are consistent with the incidence matrix. That
is, adopting the notation from section 2, we denote the set of infinite A-admissible words
I∞A on the alphabet I by

I∞A = {ω ∈ I∞ : Aωnωn+1 = 1 for all n ≥ 1}.

A hyperbolic Graph Directed Markov System (GDMS) consists of a directed multigraph and
an associated incidence matrix, (V, I, in, to, A), together with a set of non-empty compact
metric spaces {Xv}v∈V , a number s, 0 < s < 1, and for every i ∈ I, a one-to-one contraction
ϕi : Xto(i) → Xin(i) with a Lipschitz constant less than or equal to s. Briefly, the set

Φ = {ϕi : Xto(i) → Xin(i)}i∈I
is called a hyperbolic GDMS, or simply GDMS for short. We now describe its limit set.
For each ω ∈ I∗A, say ω ∈ InA, we consider the map coded by ω,

ϕω := ϕω1 ◦ · · · ◦ ϕωn : Xto(ωn) → Xin(ω1).

For each ω ∈ I∞A , the sets
(
ϕω|n

(
Xto(ωn)

))∞
n=1

form a descending sequence of non-empty

compact sets and therefore
⋂∞
n=1 ϕω|n

(
Xto(ωn)

)
6= ∅. Since for every n ≥ 1 we have

diam
(
ϕω|n

(
Xto(ωn)

))
≤ sn diam

(
Xto(ωn)

)
≤ sn max{diam(Xv) : v ∈ V }, we conclude that

the intersection
∞⋂
n=1

ϕω|n
(
Xto(ωn)

)
is a singleton and we denote its element by πΦ(ω). In this way we have defined the coding
map πΦ from I∞A to X :=

⊕
v∈V Xv, the disjoint union of the compact sets Xv. The set

JΦ = πΦ(I∞A )

is the limit set of the GDMS Φ.
A (hyperbolic) GDMS is called conformal (and thus is a (hyperbolic) CGDMS) if the

following conditions are satisfied.

(a) For every vertex v ∈ V , Xv is a compact connected subset of a Euclidean space Rd

(the dimension d ≥ 1 being common to all v ∈ V ) and Xv = Int(Xv).
(b) Open Set Condition(OSC): For all a, b ∈ I, a 6= b,

ϕa(Int(Xto(a))) ∩ ϕb(Int(Xto(b))) = ∅.

(c) For every vertex v ∈ V there exists an open connected set Wv ⊃ Xv such that for
every i ∈ I with to(i) = v, the map ϕi extends to a C1 conformal diffeomorphism
of Wv into Win(i).

(d) Cone Property: There exist γ, l > 0 such that for every x ∈ X ⊂ Rd there exists
an open cone Con(x, γ, l) ⊂ Int(X) with vertex x, central angle of measure γ, and
altitude l.

(e) There are two constants L ≥ 1 and α > 0 such that∣∣‖ϕ′i(y)‖ − ‖ϕ′i(x)‖∣∣ ≤ L‖(ϕ′i)−1‖−1‖y − x‖α

for every i ∈ I and every pair of points x, y ∈ Xto(i), where ‖ϕ′i(x)‖ means the norm
of the derivative of ϕ at x.
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A GDMS Φ which satisfies (a) and (c) — (e) without necessarily satisfying (b) will be
called a WPO CGDMS, where WPO stands for “With Potential Overlaps”. Obviously, a
CGDMS is a WPO CGDMS without overlaps.

The following remarkable result was proved in [4].

Proposition 3.1. If d ≥ 2 and a GDMS Φ = {ϕi}i∈I satisfies conditions (a) and (c), then
it also satisfies condition (e) with α = 1.

As shown in [4], the following result is a rather straightforward consequence of (e).

Lemma 3.2. If d ≥ 2 and a GDMS Φ = {ϕi}i∈I satisfies conditions (a) and (c) (and thus
(e)), then for all ω ∈ I∗A and all x, y ∈ Wto(ω), we have∣∣log ‖ϕ′ω(y)‖ − log ‖ϕ′ω(x)‖

∣∣ ≤ L

1− α
‖y − x‖α.

As an immediate consequence of the previous lemma, observe the following.

(f) Bounded Distortion Property (BDP): There exists K ≥ 1 such that for all ω ∈ I∗A
and all x, y ∈ Xto(ω)

‖ϕ′ω(y)‖ ≤ K‖ϕ′ω(x)‖.
In a different vein, it was proved in [4] that for each t ≥ 0 the following limit exists (and

can be equal to ∞ but not −∞):

PΦ(t) = lim
n→∞

1

n
log
∑
ω∈In

A

‖ϕ′ω‖t.

This number is called the topological pressure of the parameter t. It is important to notice
that pressure is well defined whenever (a) and (c) are satisfied.

From the graph of the pressure function, two fundamental parameters were identified
in [4]. First, Bowen’s parameter BP (Φ) of a WPO CGDMS Φ is defined as

BP (Φ) := inf{t ≥ 0 : PΦ(t) < 0}.
A second useful parameter is the finiteness parameter

θ(Φ) = inf{t ≥ 0 : PΦ(t) <∞} = sup{t ≥ 0 : PΦ(t) = ∞}.
It turns out that the pressure function is non-increasing on [0,∞), strictly decreasing on
[θ(Φ),∞), and convex and continuous on (θ(Φ),∞). It is also right-continuous at θ(Φ).

We now recall Mauldin and Urbanski’s classification of systems in terms of the pressure
function.

Definition 3.3. A WPO CGDMS Φ is said to be regular if there exists t ≥ 0 such that
PΦ(t) = 0. Otherwise, Φ is said to be irregular.

Definition 3.4. A WPO CGDMS is said to be strongly regular if there exists t ≥ 0 such
that 0 < PΦ(t) <∞.

Definition 3.5. A WPO CGDMS is said to be cofinitely regular if all of its cofinite sub-
systems are regular. (A family Φ|F := {ϕi}i∈F is said to be a cofinite subsystem of a system
Φ = {ϕi}i∈I if F ⊂ I and the difference I \ F is finite.)

The following fact, which relates the diverse kinds of regularity, can be found in [4].
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Proposition 3.6. Each cofinitely regular system is strongly regular, and each strongly
regular system is regular.

Finally, we state the central result of the theory of CGDMS. Let Fin(I) denote the
family of all finite subsets of I. The following characterization of HD(JΦ), the Hausdorff
dimension of the limit set JΦ, is a variant of Bowen’s formula. It was proved in [4] as
Theorem 4.2.13 for finitely primitive CGDMS, but the proof can easily be improved to
finitely irreducible CGDMS.

Theorem 3.7. If a CGDMS Φ is finitely irreducible, that is, has an associated matrix A
which is finitely irreducible, then

HD(JΦ) = BP (Φ) = sup{HD(JΦ|F ) : F ∈ Fin(I)} ≥ θ(Φ).

It follows immediately from this theorem that if Φ is regular, that is if PΦ(t) = 0 for some
t, then that t is the only zero of the pressure function PΦ(t) and t = HD(JΦ). Moreover, a
system Φ is strongly regular if and only if HD(JΦ) > θ(Φ).

Note also that the theorem is generally not true when there are overlaps, that is when
the OSC is not satisfied.

4. Preliminaries on Differentiability

Throughout this section F denotes either R or C. Let also d ≥ 1 be an integer and I a
countable (either finite or infinite) set. For every F ⊂ I we denote by PF : (Fd)I → (Fd)F

the canonical projection from (Fd)I onto (Fd)F . For every point x ∈ (Fd)I and every set
F ⊂ I set

F(x,F ) = P−1
I\F
(
PI\F (x)

)
.

If the set F is finite, then F(x,F ) is canonically isomorphic to Fd(#F ) and is called the space
box of (Fd)I generated by x and F . Recall that the box topology on (Fd)I has for a base
the set of all Cartesian products Πi∈IUi, where each Ui, i ∈ I, is an open subset of Fd. A
function G : U → B from U , an open subset of (Fd)I in the box topology, to a Banach
space B is said to be differentiable at a point x ∈ U if its restriction to every space box
F(x,F ) intersected with U , that is G|F(x,F )∩U , is differentiable at the point x. As usual, G is
said to be differentiable on a set V ⊂ U if it is differentiable at every point of V . Analogous
definitions of Cr differentiability (1 ≤ r ≤ ∞), real analyticity, and complex analyticity
(that is, holomorphicity) when F = C, can be readily made. Note that due to Hartogs
Theorem, it suffices to consider singleton sets F in the definition of complex analyticity.

5. Refined Properties of Conformal Mappings

We now turn our attention to conformal mappings in higher-dimensional spaces. Let us
fix an integer d ≥ 3. For every z = (z1, z2, . . . , zd) ∈ Cd we define

(5.1) |||z|||2 :=
d∑
j=1

z2
j and ‖z‖2 :=

d∑
j=1

|zj|2.

Of course, in general |||z|||2 is a complex number and is not the square of a norm. However,
||| · |||2|Rd = ‖ · ‖2|Rd and ‖ · ‖2 are the squares of the standard Euclidean norms in Rd
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and Cd, respectively. It is also worth noticing that
∣∣∣|||z|||2∣∣∣ ≤ ‖z‖2 for every z ∈ Cd. We

will often implicitly consider Rd as naturally embedded in Cd. Open balls in Rd will be
denoted by B(z, r), while open balls in Cd will be denoted by BCd(z, r). We denote by R̂d

and Ĉd the one-point (Alexandrov) compactifications of Rd and Cd, respectively, obtained

by adding the point ∞. Recall that, given a ∈ Rd and r > 0, the inversion ia,r : R̂d → R̂d

in the sphere centred at a and of radius r is given by the formula

(5.2) ia,r(x) = r2 x− a

‖x− a‖2
+ a.

We further set i∞,∞ = Id. Obviously, ia,r is an involution (that is, i2a,r = Id) which leaves

the sphere ∂B(a, r) invariant, and a = i−1
a,r(∞). Liouville’s Theorem (see [2, 10]) says that

each C1 conformal homeomorphism ϕ defined on a connected, open subset of Rd extends
to the entire space R̂d and takes on the form

(5.3) ϕ(x) = λA ◦ ia,r(x) + b,

where λ > 0, A : Rd → Rd is a (linear) isometry, a ∈ R̂d, r ∈ (0,∞] and b ∈ Rd. The
number λ is often called the scalar factor of ϕ, and a = ϕ−1(∞) its center of inversion.
Note that for every x ∈ Rd, the scaling factor of the derivative ϕ′(x) is given by the formula

(5.4) ‖ϕ′(x)‖ =
λr2

‖x− a‖2
> 0.

For every a ∈ Rd, let

Za = {z ∈ Cd : |||z − a|||2 = 0}.

Clearly, Za = a+Z0. Notice that the inversion ia,r extends to the open set Ĉd\Za. Indeed,

for every z ∈ Ĉd\Za, set

(5.5) ia,r(z) = r2 z − a

|||z − a|||2
+ a.

The C1 conformal homeomorphism ϕ : R̂d → R̂d therefore extends canonically to a map
from Ĉd\Za to Ĉd by the formula

(5.6) ϕ(z) = λA ◦ ia,r(z) + b.

The “scaling factor of the derivative” of this extension is defined as

(5.7) |||ϕ′(z)||| = λr2

|||z − a|||2
.

Observe that this factor is generally a nonzero complex number.
We will later need the following result:

Lemma 5.1. If X is a compact subset of Rd and V ⊃ X is an open subset of Rd, then

distCd

(
X,

⋃
a∈Rd\V

Za

)
> 0.
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Proof. Suppose on the contrary that distCd(X,∪a∈Rd\VZa) = 0. Then there exist se-

quences (a(n))∞n=1 ⊂ Rd\V and (z(n))∞n=1 ⊂ Cd such that z(n) ∈ Za(n) for every n ≥ 1 and
limn→∞ distCd(X, z(n)) = 0. Since X is compact, by passing to a subsequence if necessary,
we may assume without loss of generality that the sequence (z(n))∞n=1 converges to a point
x ∈ X. Now, for every n ≥ 1, we have

(5.8)

|||z(n) − a(n)|||2 =
d∑
j=1

(
(z

(n)
j − xj) + (xj − a

(n)
j )
)2

= |||z(n) − x|||2 + 2
d∑
j=1

(z
(n)
j − xj)(xj − a

(n)
j ) + ‖x− a(n)‖2.

To shorten the notation, set ∆ := dist(X, ∂V ). Since a(n) ∈ Rd\V and x ∈ X, we have

(5.9) ‖x− a(n)‖2 ≥ ∆2 > 0.

Moreover, since limn→∞ z(n) = x, there exists N ≥ 1 such that for all n ≥ N we have

(5.10) ‖z(n) − x‖ ≤ 1

8d
min{1,∆2}.

So, for all n ≥ N and those 1 ≤ j ≤ d such that |xj − a
(n)
j | ≤ 1, we have

(5.11) 2|z(n)
j − xj| · |xj − a

(n)
j | ≤ 2‖z(n) − x‖ ≤ 1

4d
∆2,

whereas for those j for which |xj − a
(n)
j | ≥ 1, we get

(5.12) 2|z(n)
j − xj| · |xj − a

(n)
j | ≤ 2‖z(n) − x‖ · |xj − a

(n)
j |2 ≤ 1

4d
‖x− a(n)‖2.

Thus, using (5.8) — (5.12), we obtain for every n ≥ N∣∣∣|||z(n) − a(n)|||2
∣∣∣ ≥ ‖x− a(n)‖2 − ‖z(n) − x‖2 − 2

d∑
j=1

|z(n)
j − xj| · |xj − a

(n)
j |

≥ ‖x− a(n)‖2 − 1

4
∆2 − 1

4d

d∑
j=1

max
{

∆2, ‖x− a(n)‖2
}

≥ 1

2
‖x− a(n)‖2 ≥ 1

2
∆2 > 0.

Hence z(n) /∈ Za(n) for each n ≥ N , and this contradiction completes the proof. �

We will also need the following estimates:

Lemma 5.2. Let X be a compact subset of Rd and V ⊃ X an open subset of Rd. Let
∆ := dist(X, ∂V ) > 0 and ∆̃ = ∆/(32d). Then for all (w, α) ∈ BCd(X, ∆̃)×BCd(Rd\V, ∆̃)
we have ∣∣∣|||w − α|||2

∣∣∣ ≥ 3

16
‖w − α‖2 > 0.
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Proof. Let (w, α) ∈ BCd(X, ∆̃)×BCd(Rd\V, ∆̃) and take (x, a) ∈ X × (Rd\V ) such that
(w, α) ∈ BCd(x, ∆̃)×BCd(a, ∆̃). Then∣∣∣|||w − α|||2

∣∣∣ =
∣∣∣|||w − x+ x− a+ a− α|||2

∣∣∣
=

∣∣∣∣∣ |||w − x|||2 + ‖x− a‖2 + |||a− α|||2

+2
∑d

j=1

[
(wj − xj)(xj − aj) + (xj − aj)(aj − αj) + (wj − xj)(aj − αj)

] ∣∣∣∣∣
≥ ‖x− a‖2 −

∣∣∣|||w − x|||2
∣∣∣− ∣∣∣|||a− α|||2

∣∣∣
−2
∑d

j=1

[
|wj − xj| · |xj − aj|+ |xj − aj| · |aj − αj|+ |wj − xj| · |aj − αj|

]
≥ ‖x− a‖2 − ‖w − x‖2 − ‖a− α‖2

−2d
[
‖w − x‖ · ‖x− a‖+ ‖x− a‖ · ‖a− α‖+ ‖w − x‖ · ‖a− α‖

]
≥ ‖x− a‖2 − 2∆̃2 − 2d[2∆̃‖x− a‖+ ∆̃2]

≥ ‖x− a‖2

(
1− 4∆̃d

∆

)
− 2(d+ 1)∆̃2

≥ 7

8
‖x− a‖2 − 2(d+ 1)‖x− a‖2

1024d2

≥ 3

4
‖x− a‖2.

Since

‖x− a‖ ≥ ‖w − α‖ − ‖x− w‖ − ‖α− a‖ ≥ ‖w − α‖ − 2∆̃ ≥ 1

2
‖w − α‖ ≥ 1

2
(∆− 2∆̃) > 0,

we conclude that∣∣∣|||w − α|||2
∣∣∣ ≥ 3

4

(1

2
‖w − α‖

)2

=
3

16
‖w − α‖2 ≥ 3

16
(∆− 2∆̃)2 > 0.

�

Lemma 5.3. If X is a compact subset of Rd and V ⊃ X is an open subset of Rd, then
there exists a constant C(X,V ) > 0, depending only on ∆ := dist(X, ∂V ) and d, such that
for all (z, α), (w, β) ∈ BCd(X, ∆̃)×BCd(Rd\V, ∆̃), where ∆̃ := ∆/(32d), we have

max

{∣∣∣∣ ‖z − α‖2

‖w − β‖2
− 1

∣∣∣∣ , ∣∣∣∣ |||z − α|||2

|||w − β|||2
− 1

∣∣∣∣}
≤ C(X,V )

(
‖z − w‖2 + ‖α− β‖2 + ‖z − w‖+ ‖z − w‖ · ‖α− β‖+ ‖α− β‖

)
.
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Proof. Let (z, α), (w, β) ∈ BCd(X, ∆̃)×BCd(Rd\V, ∆̃). Then

∣∣∣∣ ‖z − α‖2

‖w − β‖2
− 1

∣∣∣∣ =

∣∣∣∣∣∣∣
‖z − w‖2 + ‖α− β‖2

+2
∑d

j=1 Re
[
(zj − wj)(wj − βj) + (zj − wj)(βj − αj) + (wj − βj)(βj − αj)

]
∣∣∣∣∣∣∣

‖w − β‖2

≤


‖z − w‖2 + ‖α− β‖2

+2d
[
‖z − w‖ · ‖w − β‖+ ‖z − w‖ · ‖β − α‖+ ‖w − β‖ · ‖β − α‖

]


‖w − β‖2

≤
(∆′)−2

(
‖z − w‖2 + ‖α− β‖2

)
+2d(∆′)−1

(
‖z − w‖+ (∆′)−1‖z − w‖ · ‖α− β‖+ ‖α− β‖

)
,

where ∆′ = ∆− 2∆̃.
Similarly,

∣∣∣∣ |||z − α|||2

|||w − β|||2
− 1

∣∣∣∣ =

∣∣∣∣∣∣∣
|||z − w|||2 + |||α− β|||2

+2
∑d

j=1

[
(zj − wj)(wj − βj) + (zj − wj)(βj − αj) + (wj − βj)(βj − αj)

]
∣∣∣∣∣∣∣∣∣∣|||w − β|||2

∣∣∣

≤


‖z − w‖2 + ‖α− β‖2

+2d
[
‖z − w‖ · ‖w − β‖+ ‖z − w‖ · ‖β − α‖+ ‖w − β‖ · ‖β − α‖

]


(3/16)‖w − β‖2

≤ 16

3

 (∆′)−2
(
‖z − w‖2 + ‖α− β‖2

)
+2d(∆′)−1

(
‖z − w‖+ (∆′)−1‖z − w‖ · ‖α− β‖+ ‖α− β‖

)  ,

where we have relied upon Lemma 5.2 to bound from below the denominator in the second-

to-last inequality. Simply take C(X,V ) = (32/3) max
{

(∆′)−2, 6d(∆′)−1 max{1, (∆′)−1}
}

.

�

We will also need a slightly different type of estimates:

Lemma 5.4. Let X be a compact subset of Rd and V ⊃ X an open subset of Rd. Let
∆ := dist(X, ∂V ) > 0 and ∆̃ := ∆/(32d). Then for every 0 < r < ∆̃ and every couple
(z, α) ∈ BCd(X, r)×BCd(Rd\V, r) we have∣∣∣∣ ‖z − α‖2

|||z − α|||2
− 1

∣∣∣∣ ≤ 64dr

3‖z − α‖
.

Proof. Let (z, α) ∈ BCd(X, r)×BCd(Rd\V, r). Then
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∣∣∣∣ ‖z − α‖2

|||z − α|||2
− 1

∣∣∣∣ =

∣∣∣‖z − α‖2 − |||z − α|||2
∣∣∣∣∣∣|||z − α|||2

∣∣∣
≤ 16

3

∣∣∣∑d
j=1(zj − αj)(zj − αj)−

∑d
j=1(zj − αj)

2
∣∣∣

‖z − α‖2

≤ 16

3‖z − α‖2

d∑
j=1

|zj − αj|
∣∣∣(zj − zj) + (αj − αj)

∣∣∣
≤ 32

3‖z − α‖

d∑
j=1

(
|Im(zj)|+ |Im(αj)|

)
=

64dr

3‖z − α‖
.

�

Now, let
Md := (0,∞)× (0,∞)× Rd × Rd × SO(d) ⊂ Rq,

where q = 2+ 1
2
d(d+3). Note thatMd is an open subset of Rq. Given e = (λe, re, ae, be, Ae) ∈

Md, set (cf. formulas (5.3) and (5.4))

ϕe = λeAe ◦ iae,re + be.

More generally, put

CMd := C\{0} × C\{0} × Cd × Cd × SOC(d) ⊂ Cq.

Observe that CMd is an open subset of Cq, and for every e ∈ CMd define ϕe again as above
(cf. formulas (5.5) and (5.6)).

Now, given X a compact subset of Rd and V ⊃ X an open subset of Rd, as well as s > 0,
let

Md(X,V )s =
{
e ∈Md : ae ∈ Rd\V and sup

x∈X
‖ϕ′e(x)‖ ≤ s

}
.

Our last goal in this section is to prove Lemma 5.7, which will later be used to “com-
plexify” the space of graph directed Markov systems. In order to prove it, we first establish
two preliminary lemmas.

Lemma 5.5. Let X be a compact subset of Rd and V ⊃ X an open subset of Rd. Then
for every ε > 0 and every e ∈ Md(X,V )1 there exists δ = δe(ε) > 0 such that if f ∈
BCq(e, δ) ∩ CMd, then ‖ϕf − ϕe‖X ≤ ε, where ‖ϕf − ϕe‖X := supx∈X ‖ϕf (x)− ϕe(x)‖.

Proof. Fix e ∈ Md(X,V )1 and 0 < ε < min{1, 1/(4C(X,V ))}, where C(X,V ) is the
constant arising from Lemma 5.3. Set ∆ := dist(X, ∂V ) and ∆̃ := ∆/(32d). Take

δ = εmin

{
(

6
√

2− 1) min{λe, re, 1},
min{∆, 1}

48 max{λe, λer2
e , r

2
e , ‖ae‖+ 1, λe(‖ae‖+ 1)}

}
.
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If f ∈ BCq(e, δ) ∩ CMd, then one can show that the following conditions are satisfied:

(5.13) ‖af − ae‖ ≤ min
{ ε

16(1 + 3d)
, ∆̃
}
,

(5.14) ‖bf − be‖ ≤
ε

4
,

(5.15)
∥∥∥λfr2

fAf − λer
2
eAe

∥∥∥ ≤ ∆
ε

4
,

(5.16)
∥∥∥λfAfaf − λeAeae

∥∥∥ ≤ ε

4

and

(5.17) |λf ||rf |2‖Af‖ ≤ 2λer
2
e‖Ae‖ = 2λer

2
e .

Since ‖af − ae‖ ≤ ∆̃, it follows from Lemma 5.2 that

ϕf (x) = λfAf

(
r2
f

x− af
|||x− af |||2

+ af

)
+ bf

is well defined for all x ∈ X. Then for all x ∈ X we have

‖ϕf (x)− ϕe(x)‖

=

∥∥∥∥∥∥∥
(
λfr

2
fAf − λer

2
eAe

)
x−ae

‖x−ae‖2 + λfr
2
fAf

(
x−af

|||x−af |||2
− x−ae

‖x−ae‖2

)
+(λfAfaf − λeAeae) + (bf − be)

∥∥∥∥∥∥∥
≤ ‖x− ae‖−1‖λfr2

fAf − λer
2
eAe‖+ |λf ||rf |2‖Af‖

∥∥∥ x− af
|||x− af |||2

− x− ae
‖x− ae‖2

∥∥∥
+‖λfAfaf − λeAeae‖+ ‖bf − be‖

≤ ∆−1∆
ε

4
+ |λf ||rf |2‖Af‖

∥∥∥‖x− ae‖2(x− af )− |||x− af |||2(x− ae)
∥∥∥∣∣∣|||x− af |||2

∣∣∣‖x− ae‖2
+
ε

4
+
ε

4

≤ 3ε

4
+ |λf ||rf |2‖Af‖

∥∥∥‖x− ae‖2(x− af )− |||x− af |||2(x− ae)
∥∥∥∣∣∣|||x− af |||2

∣∣∣‖x− ae‖2
,

where we used (5.14), (5.15) and (5.16). Now

(5.18)

∥∥∥‖x− ae‖2(x− af )− |||x− af |||2(x− ae)
∥∥∥

=
∥∥∥‖x− ae‖2(ae − af ) + (‖x− ae‖2 − |||x− af |||2)(x− ae)

∥∥∥
≤ ‖ae − af‖ · ‖x− ae‖2 + ‖x− ae‖

∣∣∣‖x− ae‖2 − |||x− af |||2
∣∣∣.
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Furthermore,

(5.19)

∣∣∣‖x− ae‖2 − |||x− af |||2
∣∣∣ =

∣∣∣ d∑
j=1

(afj
− aej

)
(
(xj − afj

) + (xj − aej
)
)∣∣∣

≤ d‖af − ae‖
(
‖x− af‖+ ‖x− ae‖

)
.

In virtue of (5.13) and Lemma 5.3 (recall that 0 < ε < min{1, 1/(4C(X,V ))}), we have

1

2
≤

∣∣∣|||x− af |||2
∣∣∣, ‖x− af‖2

‖x− ae‖2
≤ 3

2
.

Combining this with (5.18) and (5.19), we get∥∥∥‖x− ae‖2(x− af )− |||x− af |||2(x− ae)
∥∥∥∣∣∣|||x− af |||2

∣∣∣‖x− ae‖2
≤ ‖af − ae‖∣∣∣|||x− af |||2

∣∣∣ +
d‖af − ae‖

(
‖x− af‖+ ‖x− ae‖

)
∣∣∣|||x− af |||2

∣∣∣‖x− ae‖

≤ ‖af − ae‖
(1/2)‖x− ae‖2

+ d‖af − ae‖
3‖x− ae‖

(1/2)‖x− ae‖3

= 2(1 + 3d)
‖af − ae‖
‖x− ae‖2

.

Since ‖ϕ′e(x)‖ ≤ 1, we get from (5.4) that λer
2
e ≤ ‖x− ae‖2. Using this, (5.17), the above

inequality and (5.13), we deduce that

|λf ||rf |2‖Af‖

∥∥∥‖x− ae‖2(x− af )− |||x− af |||2(x− ae)
∥∥∥∣∣∣|||x− af |||2

∣∣∣‖x− ae‖2
≤ 2λer

2
e · 2(1 + 3d)

‖af − ae‖
‖x− ae‖2

= 4(1 + 3d)‖af − ae‖ ≤ ε/4.

We thus conclude that ‖ϕf (x)− ϕe(x)‖ < ε. Since this is true for every x ∈ X, we deduce
that ‖ϕf − ϕe‖X ≤ ε. Finally, because f was chosen arbitrarily in BCq(e, δ) ∩ CMd, the
proof is complete. �

Here is the second preliminary lemma.

Lemma 5.6. Let X be a compact subset of Rd and V ⊃ X an open subset of Rd. Fix
s ∈ (0, 1]. Then for every ε > 0 there exists r > 0 such that for all e ∈Md(X,V )s there is
δ = δe > 0 such that if f ∈ BCq(e, δ)∩CMd, then ‖ϕ′f (z)‖ ≤ (1+ ε)s for all z ∈ BCd(X, r).

Proof. For every g ∈ CMd and every z ∈ Cd\Zag define the matrix (ĝij(z))1≤i,j≤d by the
formula

ĝij(z) =
(zi − agi

)(zj − agj
)

|||z − ag|||2
,

where, to allege notation, agi
:= (ag)i denotes the i-th component of ag. Let ε ∈ (0, 1/2).

Let ε̃ ∈ (0, ε] be such that (1 + ε̃)2(1− ε̃)−1(1 + 12dε̃) ≤ 1 + ε. Let ∆ := dist(X, ∂V ) and
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take 0 < r ≤ 3∆ε̃/(128d) such that, according to Lemma 5.3,

(5.20) max

{∣∣∣∣ ‖z − α‖2

‖w − β‖2
− 1

∣∣∣∣ , ∣∣∣∣ |||z − α|||2

|||w − β|||2
− 1

∣∣∣∣} ≤ ε̃ < 1/2

for every (z, α), (w, β) ∈ BCd(X, r) × BCd(Rd\V, r). Since 0 < r < ∆̃ := ∆/(32d),
Lemma 5.4 gives

(5.21)

∣∣∣∣ ‖z − α‖2

|||z − α|||2
− 1

∣∣∣∣ ≤ 64dr

3‖z − α‖
≤ 64dr

3(∆− 2r)
≤ 128dr

3∆
≤ ε̃.

for every couple (z, α) ∈ BCd(X, r)×BCd(Rd\V, r).
Now, let e ∈ Md(X,V )s. Take 0 < δ ≤ r such that if f ∈ BCq(e, δ) ∩ CMd, then

|λf ||rf |2 ≤ (1 + ε̃)λer
2
e and ‖Af‖ ≤ (1 + ε̃)‖Ae‖ = 1 + ε̃. Let f ∈ BCq(e, δ) ∩ CMd. Fix

1 ≤ i, j ≤ d and z ∈ BCd(X, r). Then there exists x ∈ X such that ‖z − x‖ < r. We
thereafter have

|f̂ij(z)− êij(x)| =
∣∣∣((xi − aei

)(xj − aej
)− (zi − afi

)(zj − afj
)
)
‖x− ae‖−2

+
(
‖x− ae‖−2 − |||z − af |||−2

)
(zi − afi

)(zj − afj
)
∣∣∣

≤ ‖x− ae‖−2
∣∣∣(xi − aei

)(xj − aej
)− (zi − afi

)(zj − afj
)
∣∣∣

+‖z − af‖2
∣∣∣‖x− ae‖−2 − |||z − af |||−2

∣∣∣
≤ ‖x− ae‖−2

∣∣∣(xi − aei
)
(
(xj − zj) + (afj

− aej
)
)

+ (zj − afj
)
(
(xi − zi) + (afi

− aei
)
)∣∣∣

+

∣∣∣∣‖z − af‖2

‖x− ae‖2
− ‖z − af‖2

|||z − af |||2

∣∣∣∣
≤ ‖x− ae‖−2

[
‖x− ae‖

(
‖x− z‖+ ‖af − ae‖

)
+ ‖z − af‖

(
‖x− z‖+ ‖af − ae‖

)]
+

∣∣∣∣‖z − af‖2

‖x− ae‖2
− 1

∣∣∣∣+ ∣∣∣∣ ‖z − af‖2

|||z − af |||2
− 1

∣∣∣∣
≤ ‖x− ae‖−2

(
‖x− ae‖+ ‖z − af‖

)(
r + ‖f − e‖

)
+ 2ε̃,

where we successively used (5.20) with α = af , w = x and β = ae, and (5.21) with α = af ,
keeping in mind that ae ∈ Rd\V since e ∈Md(X,V )s. Since δ ≤ r and f ∈ BCq(e, δ)∩CMd,
we obtain

|f̂ij(z)− êij(x)| ≤ ‖x− ae‖−2
(
‖x− ae‖+ ‖z − af‖

)
· 2r + 2ε̃.

Using (5.20) again, we deduce that

|f̂ij(z)− êij(x)| ≤ ‖x− ae‖−2
(
‖x− ae‖+ 2‖x− ae‖

)
· 2r + 2ε̃

= 6r‖x− ae‖−1 + 2ε̃ ≤ 6∆−1r + 2ε̃ < 3ε̃.

Since the above argument is in particular valid with f replaced by e, we have

|f̂ij(z)− êij(z)| ≤ |f̂ij(z)− êij(x)|+ |êij(x)− êij(z)| < 6ε̃.



16 MARIO ROY AND MARIUSZ URBAŃSKI

Hence ‖f̂ − ê‖ < 6dε̃. Now, the derivative matrix ϕ′f (z) of ϕf , written as the matrix

of partial derivatives in complex coordinates at a point z ∈ Cd, is equal to λfr
2
f |||z −

af |||−2Af (Id − 2f̂)(z). By our choice of δ we have |λf ||rf |2 ≤ (1 + ε̃)λer
2
e and ‖Af‖ ≤

(1 + ε̃)‖Ae‖ = 1 + ε̃. Moreover, ‖(Id − 2f̂) − (Id − 2ê)‖ = 2‖f̂ − ê‖ < 12dε̃. Using once
again (5.20) as well as the above estimates, we get

‖ϕ′f (z)‖ ≤ (1 + ε̃)λer
2
e · (1− ε̃)−1‖x− ae‖−2 · (1 + ε̃) · (1 + 12dε̃)

≤ (1 + ε)λer
2
e‖x− ae‖−2 ≤ (1 + ε)s.

Since this is true for every z ∈ BCd(x, r), the result follows. �

Now, given two compact subsets X1, X2 of Rd, two open subsets V1, V2 of Rd containing
X1 and X2 respectively, and s ∈ (0, 1), we denote by Rs((X1, V1) ; (X2, V2)) the subset of
Md consisting of all e such that

(5.22) ϕe(X1) ⊂ X2, ϕe(V1) ⊂ V2

and

(5.23) sup{‖ϕ′e(x)‖ : x ∈ X1} ≤ s.

Note that Rs((X1, V1) ; (X2, V2)) ⊂Md(X1, V1)s. We define analogously the complex subset
Cs((X1, V1) ; (X2, V2)) of CMd, requiring this time that the Xi’s be compact subsets of Cd

and that the Vi’s be open subsets of Cd, each containing the corresponding Xi.

Lemma 5.7. Suppose that X1 and X2 are compact subsets of Rd, and that V1 and V2

are open subsets of Rd containing X1 and X2, respectively. Fix s ∈ (0, 1). Then there
exists a constant R := Rs((X1, V1) ; (X2, V2)) > 0 such that for every 0 < R̃ ≤ R, each
e ∈ Rs((X1, V1); (X2, V2)) admits δe(R̃) > 0 such that

BCq(e, δe(R̃)) ∩ CMd ⊂ C s+1
2

(
(BCd(X1, R̃), BCd(X1, 2R̃)) ; (BCd(X2, R̃), BCd(X2, 2R̃))

)
.

Proof. Apply Lemma 5.6 with X = X1, V = V1 and ε > 0 so small that

(1 + ε)s ≤ s+ 1

2
.

Let r > 0 be the corresponding number mentioned in that lemma. Fix an element e ∈
Rs((X1, V1); (X2, V2)) ⊂ Md(X1, V1)s and denote by δe,1 > 0 the corresponding number δ
produced in Lemma 5.6. The lemma then asserts that

(5.24) ‖ϕ′f (z)‖ ≤
s+ 1

2

for all z ∈ BCd(X1, r) and all f ∈ BCq(e, δe,1) ∩ CMd. Now, fix 0 < r̃ ≤ r and apply
Lemma 5.5 with

ε =
1− s

4
r̃.

Denote the resulting δ > 0 by δe,2(r̃). Lemma 5.5 then states that

(5.25) ‖ϕf − ϕe‖X1 ≤
1− s

4
r̃
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for all f ∈ BCq(e, δe,2(r̃))∩CMd. Now, set δe(r̃) := min{δe,1, δe,2(r̃)}. Consider an arbitrary
radius η ∈ [r̃/2, r̃] and take any point z ∈ BCd(X1, η). Then there exists x ∈ X1 such that
‖z − x‖ < η. Using (5.24) and (5.25), we get that for all f ∈ BCq(e, δe(r̃)) ∩ CMd

‖ϕf (z)− ϕe(x)‖ ≤ ‖ϕf (z)− ϕf (x)‖+ ‖ϕf (x)− ϕe(x)‖

≤ s+ 1

2
‖z − x‖+

1− s

4
r̃ <

s+ 1

2
η +

1− s

4
r̃ ≤ η.

Since ϕe(x) ∈ X2, we deduce that ϕf (z) ∈ BCd(X2, η). Consequently, ϕf (BCd(X1, η)) ⊂
BCd(X2, η) and ϕf (BCd(X1, η)) ⊂ BCd(X2, η). Looking at the first of these inclusions with
η = r̃/2, at the latter one with η = r̃, and considering (5.24), we conclude that

BCq(e, δe(r̃/2)) ∩ CMd ⊂ C s+1
2

(
(BCd(X1, r̃/2), BCd(X1, r̃)) ; (BCd(X2, r̃/2), BCd(X2, r̃))

)
.

Setting R = r/2 and R̃ = r̃/2 completes the proof. �

6. Analyticity of Perron-Frobenius Operators

Throughout this section d ≥ 3. Fix a countable (finite or infinite) set I and an incidence
matrix A : I × I → {0, 1}. Fix also E ∈ M I

d ⊂ (Rq)I such that ΦE = (ϕEi
)i∈I is a WPO

CGDMS with incidence matrix AEi1
Ei2

:= Ai1i2 , a finite vertex set VE, and corresponding
pairs (Xv,Wv), v ∈ VE. Denote the common contraction rate by s = sE ∈ (0, 1). Put

RE := inf
{
Rs((Xto(Ei),Wto(Ei)) ; (Xin(Ei),Win(Ei))) : i ∈ I

}
> 0,

where the number Rs((Xto(Ei),Wto(Ei)) ; (Xin(Ei),Win(Ei))) > 0 results from the application
of Lemma 5.7 with X = Xto(Ei), V = Wto(Ei) and s = sE. Note that the number RE is
positive since it is the infimum of a finite set of positive numbers. Set also

ΓEi
:= BCq

(
Ei, δEi

(RE)
)
∩ CMd

for each i ∈ I, where each number δEi
(RE) > 0 results from the application of Lemma 5.7

with X = Xto(Ei), V = Wto(Ei), s = sE, and e = Ei. In view of Lemma 5.7, for each D ∈
Πi∈IΓEi

the collection ΦD = (ϕDi
)i∈I ∈ (CMd)

I ⊂ (Cq)I forms a hyperbolic GDMS with
contraction rate less than or equal to (s+ 1)/2, the same set of vertices VE, corresponding
pairs (BCd(Xv, RE), BCd(Xv, 2RE)), v ∈ VE, and the “same” incidence matrix generated by
A : I × I → {0, 1}, that is, ADi1

Di2
:= Ai1i2 .

However, the ΦD’s are not WPO CGDMSs because they are not conformal in general.
Nevertheless, since CMd is open in Cq, the set Πi∈IΓEi

⊂ (Cq)I is open with respect
to the box topology. Observe also that Πi∈I(ΓEi

∩ Md) ⊂ (Rq)I is open because Md

is open in Rq, and that if D ∈ Πi∈I(ΓEi
∩ Md), then ΦD restricted to the generating

pairs (B(Xv, RE), B(Xv, 2RE)), v ∈ VE, is a WPO CGDMS. For every D ∈ Πi∈IΓEi
, the

coordinate projections i 7→ Di induce the mapping ω 7→ ωD = Dω1Dω2Dω3 . . . ∈ {Di : i ∈
I}∞A defined on I∞A . Note also that we will sometimes slightly abuse notation. For instance,
we will shorten the notation for the coding maps from πΦD

to πD. Our first result in this
section is the following:

Proposition 6.1. For every ω ∈ I∞A the projection map D 7→ πD(ωD) ∈ Cd, D ∈ Πi∈IΓEi
,

is holomorphic.
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Proof. For every v ∈ VE fix a point xv ∈ Xv. Then for every D ∈ Πi∈IΓEi
, we have

(6.1) πD(ωD) = lim
n→∞

ϕωD|n(xto(ωn)).

Now, let U be the intersection of Πi∈IΓEi
with some space box. Because of (5.6) and the

first part of (5.1), for every n ≥ 1 the mapping D 7→ ϕωD|n(xto(ωn)), D ∈ U , is holomorphic.

Since the ranges of these maps are bounded (in fact, contained in ∪v∈VE
BCd(Xv, RE)), we

conclude that the sequence of maps D 7→ ϕωD|n(xto(ωn)), n ≥ 1, is normal. Consequently,
all its limit points are holomorphic functions. Thus, D 7→ πD(ωD) = limn→∞ ϕωD|n(xto(ωn))
is holomorphic. �

Furthermore, we have the following property.

Lemma 6.2. The family of projection maps {D 7→ πD(ωD)}ω∈I∞A is equicontinuous at the
point E.

Proof. Fix ε > 0, and for every i ∈ I take ξi > 0 so small that BCq(Ei, ξi) ⊂ ΓEi
and

that according to Lemma 5.5 (applied with X = Xto(Ei), V = Wto(Ei) and e = Ei) we have

sup{‖ϕf − ϕEi
‖Xto(Ei)

: f ∈ BCq(Ei, ξi)} ≤ ε.

For every n ≥ 1, set

∆n := sup{‖ϕωD|n − ϕωE |n‖Xto(ωn)
: D ∈ Πi∈IBCq(Ei, ξi), ω ∈ I∞A },

and observe that ∆n ≤
√
d(max{diam(Xv) : v ∈ VE} + 2RE). For every n ≥ 1, every

D ∈ Πi∈IBCq(Ei, ξi), every ω ∈ I∞A and every x ∈ Xto(ωn+1), we have

‖ϕωD|n+1(x)− ϕωE |n+1(x)‖ =

∥∥∥∥∥∥
(
ϕωD|n(ϕ(ωD)n+1(x))− ϕωD|n(ϕ(ωE)n+1(x))

)
+
(
ϕωD|n(ϕ(ωE)n+1(x))− ϕωE |n(ϕ(ωE)n+1(x))

) ∥∥∥∥∥∥
≤
(s+ 1

2

)n
‖ϕ(ωD)n+1(x)− ϕ(ωE)n+1(x)‖+ ∆n

≤
(s+ 1

2

)n
‖ϕ(ωD)n+1 − ϕ(ωE)n+1‖Xto(ωn+1)

+ ∆n

≤
(s+ 1

2

)n
ε+ ∆n.

Therefore

∆n+1 ≤ ∆n + ε
(s+ 1

2

)n
.

Thus, by induction,

∆n ≤ ε
n∑
j=1

(s+ 1

2

)j
≤ ε

∞∑
j=0

(s+ 1

2

)j
=

ε

1− s+1
2

=
2ε

1− s
.

Applying (6.1), we obtain that ‖πD(ωD)− πE(ωE)‖ ≤ 2ε/(1− s). Since ε > 0 was chosen
arbitrarily, the family {D 7→ πD(ωD)}ω∈I∞A is equicontinuous at E. �
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Now, for every ω ∈ I∞A define the function ψω : Πi∈IΓEi
→ C by

(6.2) ψω(D) :=
|||ϕ′(ωD)1

(πD(σωD))|||
‖ϕ′(ωE)1

(πE(σωE))‖
.

where |||ϕ′f (z)||| was defined in (5.7), while ‖ϕ′e(x)‖ is the scaling factor of ϕe given in (5.4).
Note that it follows immediately from Proposition 6.1 that each function ψω, ω ∈ I∞A , is
holomorphic. Moreover, we have the following.

Lemma 6.3. For every i ∈ I there exists ρi > 0 such that BCq(Ei, ρi) ⊂ ΓEi
and

|ψω(D)− 1| < 1

2

for all ω ∈ I∞A and all D ∈ Πi∈IBCq(Ei, ρi).

Proof. This lemma is a direct consequence of (5.4), (5.7), Lemma 5.3 and Lemma 6.2.
�

Now, let log : BC(1, 1/2) → C be the branch of the logarithm determined by the require-
ment that log 1 = 0. With ρi as specified above, for every D ∈ Πi∈IBCq(Ei, ρi) and every
ω ∈ I∞A , set

(6.3) ζω(D) := logψω(D) + log ‖ϕ′(ωE)1
(πE(σωE))‖.

Fix t0 > θ(ΦE), where θ(ΦE) is the finiteness parameter of the WPO CGDMS ΦE. Aiming
to apply Theorem 2.5, we shall now prove the main result of this section:

Lemma 6.4. For every (t,D) ∈ {ξ ∈ C : Re(ξ) > t0} × Πi∈IBCq(Ei, ρi) we have that
tζ(·)(D) ∈ K s+1

2
. Moreover, the function (t,D) 7→ Ltζ(·)(D) ∈ L(Hb

s+1
2

), (t,D) ∈ {ξ ∈ C :

Re(ξ) > t0} × Πi∈IBCq(Ei, ρi/2) is holomorphic.

Proof. Fix (t,D) ∈ {ξ ∈ C : Re(ξ) > t0} × Πi∈IBCq(Ei, ρi). Since, by Lemma 6.3,
| logψ(·)(D)| is uniformly bounded by log(3/2), summability of the potential tζ(·)(D) follows
immediately from the choice of t0.

We shall now check that the function tζ(·)(D) ∈ H s+1
2

. In view of (5.7), for all ω, τ ∈ I∞A
with ω1 = τ1, we have

|tζτ (D)− tζω(D)| = |t|
∣∣∣∣log

( |||πD(σωD)− aD|||2

|||πD(στD)− aD|||2
)∣∣∣∣ ,

where aD := a(ωD)1 = a(τD)1 . Thanks to our choice of the ΓEi
’s and because BCq(Ei, ρi) ⊂

ΓEi
for each i ∈ I, we can apply Lemma 5.3 with X = Xto(Eω1 ) 3 πE(σωE), V = Wto(Eω1 ),

z = πD(σωD), w = πD(στD), and α = β = aD. With C1 := maxv∈VE
C(Xv,Wv), C2 :=

max{diam(Xv) : v ∈ VE}+ 2RE and C3 := max{diam(Xv) : v ∈ VE}, it follows that∣∣∣∣ |||πD(σωD)− aD|||2

|||πD(στD)− aD|||2
− 1

∣∣∣∣ ≤ C1 max
{
‖πD(σωD)− πD(στD)‖2, ‖πD(σωD)− πD(στD)‖

}
≤ C1C2‖πD(σωD)− πD(στD)‖

≤ C1C2C3

(
s+ 1

2

)|ω∧τ |−1

.
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Thus, there exists a constant C4 ≥ 0 such that

(6.4) |tζτ (D)− tζω(D)| ≤ C4|t|
(
s+ 1

2

)|ω∧τ |

.

So tζ(·)(D) ∈ H s+1
2

, and in consequence tζ(·)(D) ∈ K s+1
2

. On the other hand, it follows

immediately from Proposition 6.1 that for every ω ∈ I∞A , the function D 7→ ψω(D) is
holomorphic, and consequently (t,D) 7→ tζω(D) ∈ C, (t,D) ∈ {ξ ∈ C : Re(ξ) > t0} ×
Πi∈IBCq(Ei, ρi), is holomorphic. In view of Theorem 2.5 and Hartogs Theorem, in order
to complete the proof, it suffices to demonstrate that the function (t,D) 7→ tζ(·)(D) ∈
K s+1

2
, with (t,D) in a one-dimensional space box neighbourhood of (t0, E), is continuous.

Obviously, this function is continuous with respect to the variable t. So, we may assume
that t is fixed and D is a one-dimensional space box neighbourhood of Πi∈IBCq(Ei, ρi), say
D ∈ BC(b, ρi) for some fixed i ∈ I and some component b of Ei. Fix ω ∈ I∞A . Since the
function D 7→ logψω(D) is holomorphic and bounded in modulus by log(3/2) on BC(b, ρi),
and satisfies logψω(E) = 0, its Taylor series expansion on BC(b, ρi) takes on the form

(6.5) logψω(D) =
∞∑
n=1

an(ω)(D − b)n,

and from Cauchy’s estimates

|an(ω)| ≤ ρ−ni log(3/2).

Hence if F ∈ BC(b, ρi), then

(6.6)

logψω(F )− logψω(D) =
∞∑
n=1

an(ω)
(
(F − b)n − (D − b)n

)
=

∞∑
n=1

an(ω)(F −D)
n−1∑
j=0

(F − b)n−1−j(D − b)j

Consequently, if D,F ∈ BC(b, ρi/2), then

| logψω(F )− logψω(D)| ≤
∞∑
n=1

ρ−ni log(3/2)|F −D|
n−1∑
j=0

|F − b|n−1−j|D − b|j

≤ log(3/2)|F −D|
∞∑
n=1

ρ−ni

n−1∑
j=0

(ρi/2)n−1

= log(3/2)ρ−1
i

( ∞∑
n=1

n2−(n−1)
)
|F −D|.

It then follows from (6.3) that

(6.7) ‖tζ(·)(F )− tζ(·)(D)‖∞ ≤ log(3/2)|t|ρ−1
i

( ∞∑
n=1

n2−(n−1)
)
|F −D|.
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Now, fix ω, τ ∈ I∞A with ω1 = τ1. It follows from (6.3) and (6.4) that

| logψτ (D)− logψω(D)| ≤ C4

(
s+ 1

2

)|ω∧τ |

.

Combining this with (6.5), Cauchy’s estimates yield

|an(τ)− an(ω)| ≤ C4ρ
−n
i

(
s+ 1

2

)|ω∧τ |

.

So, if D,F ∈ BC(b, ρi/2), we get using (6.6) that∣∣∣(logψτ (F )− logψτ (D)
)
−
(
logψω(F )− logψω(D)

)∣∣∣

(6.8)

=
∣∣∣ ∞∑
n=1

(an(τ)− an(ω))(F −D)
n−1∑
j=0

(F − b)n−1−j(D − b)j
∣∣∣

≤ C4ρ
−1
i

( ∞∑
n=1

n2−(n−1)
)
|F −D|

(
s+ 1

2

)|ω∧τ |

.

Now, given a function g : I∞A → C we denote (as the reader will recall) by vs(g) the s-
variation of g, that is, vs(g) := sup{|g(ω)− g(τ)|/sn : ω|n = τ |n}, and by ‖g‖s the s-norm
of g, namely ‖g‖s := ‖g‖∞ + vs(g) (cf. section 2). Then it follows immediately from (6.8)
that

v s+1
2

(
logψ(·)(F )− logψ(·)(D)

)
≤ C4ρ

−1
i

( ∞∑
n=1

n2−(n−1)
)
|F −D|,

and consequently

v s+1
2

(
tζ(·)(F )− tζ(·)(D)

)
≤ C4|t|ρ−1

i

( ∞∑
n=1

n2−(n−1)
)
|F −D|.

Together with (6.7), this yields

‖tζ(·)(F )− tζ(·)(D)‖ s+1
2
≤
(
C4 + log(3/2)

)
|t|ρ−1

i

( ∞∑
n=1

n2−(n−1)
)
|F −D|.

Thus the proof of continuity is complete and we are done. �

7. Real-Analyticity of Hausdorff Dimension

Sticking to the same framework as in the preceding section, d ≥ 3, I is a countable
(finite or infinite) alphabet and A : I × I → {0, 1} an incidence matrix. Fix E ∈ M I

d ⊂
(Rq)I such that ΦE = (ϕEi

)i∈I is a strongly regular WPO CGDMS with a finite set of
vertices VE and corresponding pairs (Xv,Wv), v ∈ VE. To each element D ∈ Πi∈IΓEi

,
ascribe uniquely a hyperbolic GDMS ΦD = (ϕDi

)i∈I ∈ CM I
d ⊂ (Cq)I as in the previous

section. Recall that if D ∈ Πi∈I(ΓEi
∩ Md), then ΦD restricted to the generating pairs

(B(Xv, RE), B(Xv, 2RE))v∈VE
is a WPO CGDMS. Moreover, the limit sets of the restricted

and unrestricted systems ΦD are the same and contained in Rd. The first result of this
section is the following.
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Theorem 7.1. For every i ∈ I there is Ri > 0 such that the function D 7→ BP (ΦD),
D ∈ Πi∈IB(Ei, Ri), is real-analytic.

Proof. For every t ∈ C with Re(t) > θ(ΦE) and D ∈ Πi∈IΓEi
put Lt,D := Ltζ(·)(D) ∈

L(Hb
s+1
2

). Fix a space box U ⊂ C×Πi∈IBCq(Ei, ρi/2) containing (t0, E) (with ρi is as defined

in Lemma 6.3). Apply Lemma 6.4 with t0 = tE := BP (ΦE) > θ(ΦE) (the strict inequality
holds since ΦE is strongly regular). In view of that lemma and Theorem 2.4, Kato-Rellich
perturbation theorem applies and yields Ri ∈ (0, ρi/2] (in fact, Ri = ρi/2 except for finitely
many i ∈ I) and a holomorphic function λ : U ∩ (C × Πi∈IBCq(Ei, Ri)) → C such that
λ(tE, E) = ePE(tE) and such that λ(t,D) is a simple isolated eigenvalue of the operator
Lt,D : Hb

s+1
2

→ Hb
s+1
2

with the remainder of the spectrum separated uniformly from λ(t,D).

In particular, decreasing Ri > 0 appropriately, there is η > 0 such that

(7.1) σ(Lt,D) ∩BC(ePE(tE), η) = {λ(t,D)}

for all (t,D) ∈ U , where σ(Lt,D) denotes the spectrum of Lt,D. Since ePD(t) is the spectral
radius r(Lt,D) of the operator Lt,D for all (t,D) ∈ U∩(R×M I

d ), in view of the semicontinuity
of the spectral set function (see Theorem 10.20 on page 256 in [8]), by taking Ri’s sufficiently
small we also have that r(Lt,D) ∈ [0, ePE(tE) + η), and along with (7.1) this implies that
λ(t,D) = ePD(t) for all (t,D) ∈ U ∩ (R×M I

d ). Consequently, the function (t,D) 7→ PD(t),
(t,D) ∈ U ∩ (R×M I

d ), is real-analytic. Since PE(tE) = 0 and since

∂P

∂t

∣∣∣∣
(tE ,E)

=

∫
log ‖ϕ′(ωE)1

(πE(σωE))‖dµE(ω) < 0,

where µE is the Gibbs (equilibrium) state of the potential ω 7→ tE log ‖ϕ′(ωE)1(πE(σωE))‖,
it follows from the implicit function theorem that, with appropriately smaller Ri’s, there
exists a real-analytic function t : Û → R defined on Û , the projection of U onto the set
Πi∈IB(Ei, Ri), such that t(E) = tE and PD(t(D)) = 0. Hence t(D) = BP (ΦD) and we are
done. �

As an immediate consequence of this theorem and Bowen’s formula, we obtain the fol-
lowing:

Theorem 7.2. Suppose that the incidence matrix A : I × I → {0, 1} is finitely irreducible
and that ΦE is a strongly regular CGDMS. If with Ri, i ∈ I, as in Theorem 7.1 or smaller,
all the systems ΦD, D ∈ Πi∈IB(Ei, Ri), satisfy the OSC, then the Hausdorff dimension
function D 7→ HD(JΦD

), D ∈ Πi∈IB(Ei, Ri), is real-analytic.

Remark 7.3. Suppose that the incidence matrix A : I × I → {0, 1} is finitely irreducible
and that ΦE = (ϕEi

)i∈I is a strongly regular CGDMS. If ΦE satisfies the super strong
separation condition, that is, if for every i ∈ I

ϕEi
(Xto(Ei))

⋂ ⋃
j∈I\{i}

ϕEj
(Xto(Ej)) = ∅,

then by proceeding inductively with respect to a good order on I, we can construct R∗
i ∈

(0,∞) such that for each D ∈ Πi∈IB(Ei, R
∗
i ), the system ΦD also satisfies the super strong
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separation condition. In particular, each such ΦD satisfies the OSC and Theorem 7.2 applies
to that family of systems.
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