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Abstract. The purpose of this note is to initiate the study of ergodic optimization for
general topological dynamical systems T : X → X, where the topological space X need
not be compact. Given f : X → R, four possible notions of largest ergodic average are
defined; for compact metrisable X these notions coincide, while for general Polish spaces
X they are related by inequalities, each of which may be strict.

We seek conditions on f which guarantee the existence of a normal form, in order to
characterise its maximizing measures in terms of their support. For compact metrisable
X it suffices to find a fixed point form. For general Polish X this is not the case, but an
extra condition on f , essential compactness, is shown to imply the existence of a normal
form. When T : X → X is the full shift on a countable alphabet, essential compactness
yields an easily checkable criterion for the existence of a normal form.

Let X be a topological space, not necessarily compact. For a continuous transformation
T : X → X, let M denote the set of T -invariant Borel probability measures on X. In
general M might be empty, though if X is a non-empty compact metrisable space then
M 6= ∅, by the Krylov-Bogolioubov Theorem [W, Cor. 6.9.1]. For a function f : X → R,
define Snf :=

∑n−1
i=0 f ◦ T i . We will be interested in the largest ergodic average of the

function f (see e.g. [J2] for an introduction to this optimization problem in the case of
compact X). Four possible definitions for this are as follows.

Definition 1. By convention we define the supremum of the empty set to be −∞. Let X
be a topological space, and suppose that f : X → R is continuous. For any Borel measure
µ, the integral

∫
f dµ ∈ [−∞,∞] is defined provided

∫
f+ dµ and

∫
f− dµ are not both

infinite, where f± := max(±f, 0). Let Mf := {µ ∈M :
∫

f dµ is defined}, and define

α(f) = α(f, T ) = sup
m∈Mf

∫
f dm .

A point x ∈ X is called (T, f)-regular if limn→∞
1
nSnf(x) exists (we allow divergence to

either −∞ or +∞), and the set of (T, f)-regular points is denoted by Reg(X, T, f). Define

β(f) = β(f, T ) = sup
x∈Reg(X,T,f)

lim
n→∞

1
n

Snf(x) ,

γ(f) = γ(f, T ) = sup
x∈X

lim sup
n→∞

1
n

Snf(x) ,

δ(f) = δ(f, T ) = lim sup
n→∞

1
n

sup
x∈X

Snf(x) .
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Remark 2.
(a) If f is bounded either above or below then Mf = M.
(b) If X is compact then Mf = M for all continuous functions f .
(c) If Mf is empty then α(f) = −∞. In particular, if M is empty then α(f) = −∞ for all
continuous functions f .
(d) If M is non-empty, and f ∈ L1(µ) for some µ ∈M, then α(f) > −∞.
(e) If f is bounded above then α(f) < ∞.
(f) If f, g are continuous, and f − g is bounded, then Mf = Mg.
(g) If δ(f) ∈ [−∞,∞) then supx∈X Snf(x) is finite for all sufficiently large n, and is a
subadditive sequence of reals, so in fact the limit limn

1
n supx∈X Snf(x) ∈ [−∞,∞) exists

and equals infn 1
n supx∈X Snf(x).

Theorem 3. Let X be a Polish space. If T : X → X and f : X → R are continuous then
α(f) ≤ β(f) ≤ γ(f) ≤ δ(f) . If furthermore X is compact then α(f) = β(f) = γ(f) =
δ(f) 6= ±∞ .

Proof. It is immediate from their definitions that β(f) ≤ γ(f) and γ(f) ≤ δ(f), so it only
remains to show that α(f) ≤ β(f). Suppose on the contrary that α(f) > β(f). Then there
exists a measure µ ∈Mf for which

∫
f dµ > β(f). In particular

∫
f dµ > −∞. Since X is

a Polish space then the triple (X,B, µ) is a Lebesgue space, where B is the completion of
the Borel σ-algebra by µ [R, p. 174]. So T : (X,B, µ) → (X,B, µ) is a measure-preserving
endomorphism of a Lebesgue space, and consequently admits an ergodic decomposition
([R] pp. 178, 194, [W] p. 34): there is a Borel probability measure Pµ on the set E ⊂M of
T -ergodic measures, such that if g ∈ L1(µ) then g ∈ L1(m) for Pµ almost every m ∈ E , and∫

g dµ =
∫

m∈E

∫
g dm dPµ(m) .

If f ∈ L1(µ) this gives
∫

f dµ =
∫
m∈E

∫
f dm dPµ(m), where f ∈ L1(m) for Pµ-a.e. m ∈ E .

So there exists an ergodic measure µ′ such that
∫

f dµ′ ≥
∫

f dµ > β(f) and f ∈ L1(µ′) (so
in particular µ′ ∈ Mf ). If f /∈ L1(µ) then necessarily

∫
f dµ = +∞ (because µ ∈ Mf and∫

f dµ > −∞), so there exists µ′ ∈ E such that
∫

f dµ′ = +∞.
In either case we may apply Birkhoff’s ergodic theorem (see e.g. [K, p. 15] for the case

where
∫

f dµ′ = +∞) to see that µ′-almost every x satisfies limn→∞
1
nSnf(x) =

∫
f dµ′. In

particular there is at least one x ∈ Reg(X, T, f) for which limn→∞
1
nSnf(x) =

∫
f dµ′ >

β(f), contradicting the definition of β(f). So in fact α(f) ≤ β(f).
To prove α(f) = β(f) = γ(f) = δ(f) for compact X it suffices to show that α(f) ≥ δ(f).

The compactness of X means that M is compact for the weak∗ topology [W, Thm. 6.10].
If δy denotes the Dirac measure concentrated at y, and µn := 1

n

∑n−1
i=0 δT ixn

, where xn is
such that

sup
x∈X

1
n

Snf(x) =
1
n

Snf(xn) =
∫

f dµn ,

then the sequence (µn) has a weak∗ accumulation point µ, with
∫

f dµ = δ(f). It is easily
seen that µ ∈ M, so δ(f) =

∫
f dµ ≤ α(f). The common largest ergodic average is finite

because f is bounded. �

The following example shows that the inequalities in Theorem 3 may all be strict.



ERGODIC OPTIMIZATION 3

Example 4. Equip the integers Z with the discrete topology. Define T : Z → Z by

T (i) =


i + 1 if i < 0
i if i = 0
i + 2 if i > 0 .

Define f : Z → R by

f(i) =



2 if i < 0
−1 if i = 0
0 if i > 0 is odd
i
2 if i > 0 and i ≡ 2 (mod 4)
1− i

2 if i > 0 and i ≡ 0 (mod 4) .

The only T -invariant probability measure is the Dirac measure at 0, so α(f) = f(0) = −1.
If i > 0 is odd then limn→∞

1
nSnf(i) = 0. The only other (T, f)-regular points are

the non-positive integers i; each such i is eventually iterated onto the fixed point 0, and
therefore satisfies limn→∞

1
nSnf(i) = f(0) = −1 < 0. Therefore

β(f) = sup
i∈Reg(Z,T,f)

lim
n→∞

1
n

Snf(i) = 0 .

If i > 0 is even then

lim inf
n→∞

1
n

Snf(i) = 0 < 1 = lim sup
n→∞

1
n

Snf(i) ,

and therefore γ(f) = supi∈Z lim supn→∞
1
nSnf(i) = 1.

If i = −n < 0 then 1
nSnf(i) = 2. So supi∈Z

1
nSnf(i) = 2 for all n ∈ N, and therefore

δ(f) = limn→∞
1
n supi∈Z Snf(i) = 2.

Definition 5. A measure µ ∈Mf is called f-maximizing if∫
f dµ = α(f) .

Let Mmax(f) denote the set of f -maximizing measures.

If X is compact then Mmax(f) is non-empty, because the map µ 7→
∫

f dµ is continuous
for the weak∗ topology. If X is non-compact then Mmax(f) may be empty, even if Mf

is non-empty (e.g. this occurs if T is the identity map on R, and f : R → R is strictly
increasing). Even when Mmax(f) is non-empty, the possible non-coincidence of α(f), β(f),
γ(f), δ(f) means that maximizing measures may be less canonical objects of investigation.

In the following we shall consider the set of f -maximizing measures in situations where
α(f) = δ(f) 6= ±∞. One approach to understanding Mmax(f) is to attempt to modify f
by a coboundary in such a way that the set of suprema of the resulting function contains
the support of some invariant measure (cf. [B1, B2, CG, CLT, J1, J2]).

Definition 6. For a topological space X, let CB(X) denote the set of real-valued bounded
continuous functions on X. For a continuous map T : X → X, a function of the form
ϕ − ϕ ◦ T , where ϕ ∈ CB(X), is called a coboundary. Two functions f, g which differ by
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a coboundary are called cohomologous, and we write f ∼ g. A continuous function f̃ ∼ f
is called a normal form1 for f if f̃−1(sup f̃) contains the support (i.e. the smallest closed
subset of X with full measure) of some T -invariant probability measure.

The following result implies that if f has a normal form, its maximizing measures are
completely characterised by their support.

Lemma 7. Suppose T : X → X is a continuous map on the topological space X, and the
continuous function f : X → R has a normal form f̃ . Then Mf = M, and

Mmax(f) =
{

m ∈M : supp(m) ⊂ f̃−1(sup f̃)
}
6= ∅ .

Proof. The normal form f̃ is bounded above, so Mf̃ = M (cf. Remark 2 (a)). Moreover
f ∼ f̃ , so Mf = Mf̃ = M, by Remark 2 (f).

Now
∫

f dm =
∫

f̃ dm ≤ sup f̃ for all m ∈ M. If µ ∈ M satisfies supp(µ) ⊂ f̃−1(sup f̃)
then

∫
f dµ =

∫
f̃ dµ = sup f̃ , so α(f) = sup f̃ , and µ is f -maximizing. But f̃ is a normal

form, so there exists at least one such µ, hence there exists at least one f -maximizing
measure.

If m ∈ M is such that supp(m) 6⊂ f̃−1(sup f̃), then in fact
∫

f dm =
∫

f̃ dm < sup f̃ ,
because f̃ ≤ sup f̃ and m({x : f̃(x) < sup f̃}) > 0, so m is not f -maximizing. �

Not every continuous function has a normal form, even when X is compact; indeed the
absence of normal forms is in a sense typical (cf. [B2, BJ, J3]). However if X is compact, T
enjoys some hyperbolicity, and f is sufficiently regular, then f is known to have a normal
form (see e.g [B1, B2, CG, CLT, J1, J2]). One approach to proving this is to search for
fixed points of a certain nonlinear map Mf , defined below. This map was introduced by
Bousch [B1] to study maximizing measures in the case where X is compact.

Definition 8. Let T : X → X be a surjection on a non-empty set X, and f : X → R any
function. If ϕ : X → R then for each x ∈ X, define Mfϕ(x) ∈ (−∞,∞] by

Mfϕ(x) := sup
y∈T−1x

(f + ϕ)(y) . (1)

If f is bounded (respectively bounded above) then Mf preserves the set of bounded
(respectively bounded above) functions. Iterates of Mf can be expressed as

Mn
f ϕ(x) = sup

y∈T−n(x)

(Snf + ϕ) (y) .

Lemma 9. Let T : X → X be a surjection on a non-empty set X, and f : X → R any
function. If there exists c ∈ R, and a bounded function ϕ : X → R, such that

Mfϕ = ϕ + c ,

then
c = δ(f) = lim

n→∞

1
n

sup
x∈X

Snf(x) .

1This terminology arises because f̃ is a privileged element in the equivalence class of functions which are
cohomologous to f .
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Proof. The equation ϕ + c = Mfϕ is equivalent to Mf−cϕ = ϕ, which implies that

ϕ(x) = Mn
f−cϕ(x) = −nc + sup

y∈T−n(x)

(Snf(y) + ϕ(y))

for all n ∈ N, x ∈ X. Now ϕ is bounded, and writing a = inf ϕ, b = supϕ we have

a− b

n
+ c ≤ 1

n
sup

y∈T−n(x)

Snf(y) ≤ c +
b− a

n

for all n > 0, x ∈ X. Therefore for all n > 0,

a− b

n
+ c ≤ 1

n
sup
x∈X

sup
y∈T−n(x)

Snf(y) ≤ c +
b− a

n
,

which is equivalent to

a− b

n
+ c ≤ 1

n
sup
y∈X

Snf(y) ≤ c +
b− a

n
for all n > 0 .

Letting n →∞ gives the result. �

Definition 10. Let X be a topological space. Suppose that T : X → X is a continuous
surjection, and f : X → R is continuous. If ϕ ∈ CB(X) is a fixed point of Mf−δ(f), then
the function f̃ := f + ϕ− ϕ ◦ T is called a fixed point form for f .

Lemma 11. Let X be a topological space. Suppose that T : X → X is a continuous
surjection, and f : X → R is continuous.
(i) If f̃ is a fixed point form for f , then f̃ ≤ δ(f) .
(ii) If moreover X is compact and metrisable, then any fixed point form for f is also a
normal form.

Proof. (i) We know that f̃ = f + ϕ− ϕ ◦ T for some ϕ ∈ CB(X) which satisfies

ϕ(x) + δ(f) = sup
y∈T−1(x)

(f + ϕ)(y) (2)

for all x ∈ X. Replacing x by T (x) in (2) gives

(f + ϕ− ϕ ◦ T )(x) = δ(f)−

(
sup

y∈T−1(Tx)

(f + ϕ)(y)− (f + ϕ)(x)

)
≤ δ(f) .

(ii) Combining (i) above with Theorem 3 we see that sup f̃ ≤ α(f). But clearly α(f) =
α(f̃) ≤ sup f̃ , so in fact α(f) = sup f̃ . Let µ be an f -maximizing measure. We claim
that f̃−1(sup f̃) contains supp(µ). Were this not the case, the fact that f̃ ≤ sup f̃ and
µ({x : f̃(x) < sup f̃}) > 0 would imply that

∫
f dµ =

∫
f̃ dµ < sup f̃ , contradicting the fact

that µ is f -maximizing. �

So Lemma 11 (ii) implies that, when X is compact and metrisable, to find a normal form
for f it is sufficient to find a fixed point form. Unfortunately, if X is non-compact then this
is not the case, even when α(f) = δ(f) 6= ±∞:
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Example 12. Let X denote the countable full (unilateral) shift, i.e. the set of all sequences
x = (xn)∞n=1 of strictly positive integers. The shift map T : X → X defined by (Tx)n = xn+1

is continuous with respect to the metric δ(x, y) = 2−min{n:xn 6=yn}. If w = w1 . . . wk, then
the corresponding length-k cylinder is the set [w] := {x ∈ X : xi = wi for 1 ≤ i ≤ k}.

Define f : X → R to be constant on length-2 cylinders, with f [m,n] = −1
n(n+1) if m = n+1

and f [m,n] = −1 otherwise. Let ϕ ∈ CB(X) be constant on length-1 cylinders, defined by
ϕ[n] = −1/n for all n ∈ N. A short calculation reveals that f + ϕ− ϕ ◦ T = 0 on cylinder
sets of the form [n + 1, n], whereas (f + ϕ−ϕ ◦ T )([m,n]) = −1− 1

m + 1
n < 0 if m 6= n + 1,

so ϕ is a fixed point for Mf−δ(f), and δ(f) = 0. Now α(f) ≤ δ(f) = 0, by Theorem 3.
If νn denotes the unique invariant measure supported on the periodic orbit generated by
x(n) := (n, n− 1, . . . , 1), then supn≥0

∫
f dνn = 0. So in fact α(f) = 0. Clearly f has no

maximizing measures, since f < 0 implies that
∫

f dm < 0 for any (invariant) probability
measure m. In particular, by Lemma 7, f does not have a normal form.

Definition 13. Let T : X → X be a continuous surjection on the topological space X. A
continuous function f : X → R is essentially compact (with respect to T ) if there is a fixed
point ϕ ∈ CB(X) of Mf−δ(f), and a subset Y ⊂ X such that
(a) Ŷ := ∩∞n=0T

−nY is non-empty and compact,
(b) T (Y ) = X,
(c) for each x ∈ X,

ϕ(x) + δ(f) = sup
y∈T−1(x)∩Y

(f + ϕ)(y) . (3)

Essential compactness guarantees that a fixed point form is in fact a normal form:

Theorem 14. Let T : X → X be a continuous surjection on a Polish space X. If the
continuous function f : X → R is essentially compact, and ϕ ∈ CB(X) is as in Definition
13, then f̃ = f + ϕ− ϕ ◦ T is a normal form for f , and hence

Mmax(f) =
{

m ∈M : supp(m) ⊂ f̃−1(sup f̃)
}
6= ∅ .

Proof. It suffices to show that f̃ is a normal form; the characterisation of Mmax(f) then
follows by Lemma 7. Condition (3) implies that if x ∈ Ŷ then

ϕ(x) + δ(f) = sup
y∈T−1(x)∩Y

(f + ϕ)(y) = sup
y∈T−1(x)∩bY (f + ϕ)(y) , (4)

the second equality following because Y ∩ T−1Ŷ = Ŷ . Now (4) says that f̃ |bY is a fixed
point form for f |bY (with respect to T |bY ), and

δ(f |bY , T |bY ) = δ(f) (5)

by Lemma 9. The compactness of Ŷ means that f̃ |bY is actually a normal form for f |bY , by
Lemma 11 (ii), so

sup f̃ |bY = δ(f |bY , T |bY ) . (6)

Moreover
f̃ ≤ δ(f) , (7)
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by Lemma 11 (i), because f̃ is a fixed point form for f . Combining (5), (6) and (7) gives

f̃ ≤ sup f̃ |bY .

Now f̃ |bY is a normal form for f |bY , so

(f̃ |bY )−1(sup f̃ |bY ) = (f̃ |bY )−1(sup f̃)

contains the support of a T |bY -invariant probability measure. This measure is T -invariant,
and contained in the larger set f̃−1(sup f̃), so f̃ is a normal form for f . �

Essential compactness is a rather abstract notion, so for specific systems it is useful
to replace it by more readily verifiable conditions. For X the countable full shift, and
g : X → R, we define var0(g) = sup g − inf g and var1(g) = supx1=y1

|g(x) − g(y)|. For
x ∈ X and an integer n ≥ 1, let nx denote the element y ∈ X with y1 = n and yi = xi−1

for all i ≥ 2.

Theorem 15. Let X be the countable full shift. Suppose that f : X → R is bounded above
and constant on length-2 cylinders, and that there exists n ≥ 1 such that

var1(f) < inf f |[n] − sup f |[i] (8)

for all sufficiently large i ≥ 1.
Then f is essentially compact, hence has a normal form f̃ , and hence

Mmax(f) =
{

m ∈M : supp(m) ⊂ f̃−1(sup f̃)
}
6= ∅ .

Proof. Since f is constant on length-2 cylinders, the map Mf preserves the space of functions
which are constant on length-1 cylinders. Identifying this space with the sequence space
`∞, equipped with its usual norm, we note that for 0 ≤ λ < 1, the map ϕ 7→ Mf (λϕ)
is λ-Lipschitz on `∞, so by the contraction mapping theorem has a unique fixed point
ϕλ ∈ `∞. The fixed point equation implies that var0(ϕλ) ≤ var1(f) for all 0 ≤ λ < 1, so if
ϕ∗λ := ϕλ− inf ϕλ then ‖ϕ∗λ‖∞ = var0(ϕ∗λ) ≤ var1(f) for all 0 ≤ λ < 1. Therefore (ϕ∗λ)0≤λ<1

has an accumulation point ϕ ∈ `∞ which moreover satisfies

Mfϕ = ϕ + δ(f) (9)

and
var0(ϕ) ≤ var1(f) . (10)

If J ≥ n is such that (8) holds for all i > J , we claim that

Mfϕ(x) = max
1≤j≤J

(f + ϕ)(jx) for all x ∈ X . (11)

Note that (11) implies condition (c) of Definition 13 for the set Y = ∪J
j=1[j]. Since Y clearly

also satisfies conditions (a) and (b), it will follow from (11) that f is essentially compact,
and therefore Theorem 14 will imply the desired result.

To prove (11), note that (8) and (10) imply that for x ∈ X and i > J ,

ϕ(ix)− ϕ(nx) ≤ var0(ϕ) ≤ var1(f) < inf f |[n] − sup f |[i] ≤ f(nx)− f(ix) .

In other words,
(f + ϕ)(nx) > (f + ϕ)(ix) for all x ∈ X, i > J,

and this implies (11). �
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Example 16. For X the countable full shift, let f : X → R be constant on length-2
cylinders, defined by f [i, j] ≡ max g|C(i,j), where g : [0, 1] → R is given by g(x) = x(1− x)
and

C(i, j) =
[

1
i + 1/j

,
1

i + 1/(j + 1)

]
⊂ [0, 1]

for i, j ≥ 1 (note that these intervals are the members of the level-2 refinement of the
Markov partition for Gauss’s continued fraction map x 7→ 1/x (mod 1)).

Choosing n = 2, we claim that (8) holds. Now inf f |[2] = g(1/3) = 2/9, and sup f |[i] ↘ 0
as i →∞, so inf f |[2]− sup f |[i] ↗ 2/9 as i →∞. In particular, if i is sufficiently large then
inf f |[2]−sup f |[i] > 1/36 = g(1/2)−g(2/3) = f [1, 1]−f [1, 2] = var1(f), so indeed (8) holds.
Therefore, by Theorem 15, f is essentially compact, hence has a normal form, hence there
exist f -maximizing measures, and they are characterised by whether or not their support
lies in the set of maxima of the normal form.

Remark 17.
(a) The function f in Example 12 obviously does not satisfy (8): here var1(f) = 1,
inf f |[n] = −1 for all n, and sup f |[i] > −1 for all i.
(b) Theorem 15 can be extended to more general countable alphabet subshifts of finite
type and functions f of summable variation, at the expense of a considerably longer and
more functional-analytic proof (see [JMU]).
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