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ABSTRACT. We give a description of the level sets in the higher dimensional multifractal

formalism for infinite conformal graph directed Markov systems. If these systems possess

a certain degree of regularity this description is complete in the sense that we identify all

values with non-empty level sets and determine their Hausdorff dimension. This result is

also new for the finite alphabet case.

1. INTRODUCTION AND STATEMENTS OF MAIN RESULTS

In this paper we study Graph Directed Markov System (GDMS) as defined in [1] consisting
of a directed multigraph (V,E, i, t,A) with incidence matrix A together with a family of non-
empty compact metric spaces (Xv)v∈V , a number s∈ (0,1), and for every e∈E, an injective
contraction φe : Xt(e) → Xi(e) with Lipschitz constant not exceeding s. Briefly, the family

Φ =
(
φe : Xt(e) → Xi(e)

)
e∈E

is called a GDMS. Throughout this paper we will assume that the system is conformal (Def.
2.2), finitely irreducible (Def. 2.1), and co-finitely regular (Def. 2.7). The necessary details
will be postponed to Section 2. Let E∞

A denote the set of admissible infinite sequences for A

and σ : E∞
A → E∞

A the shift map given by (σ(x))i := (xi+1)i. With π : E∞
A → X :=

L
v∈V Xv

we denote the natural coding map from the subshift E∞
A to the disjoint union X of the

compact sets Xv (see (2.1)). Its image Λ := ΛΦ := π(E∞
A ) denotes the limit set of Φ. An

important tool for studying Φ is the following geometric potential function given by the
conformal derivatives of the contractions (φi)i∈E

I = IΦ : E∞
A → R+, IΦ (ω) :=− log

∣∣φ′ω1
(π(σ(ω)))

∣∣ .
We are going to set up a multifractal analysis for I with respect to another bounded Hölder
continuous function

J : E∞
A → Rk.
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That is for v ∈V and α ∈ Rk we investigate the level sets

Fα (v) :=
{

π(ω) : ω ∈ E∞
A , i(ω1) = v, and lim

n→∞

SnJ (ω)
SnI (ω)

= α

}
,

and Fα =
L

v∈V Fα (v)⊂ Λ. Let

Q : M (E∞
A ,σ)→ Rk, Q(µ) :=

1R
I dµ

Z
J dµ,

where M (E∞
A ,σ) denotes the set of shift invariant Borel probability measures on E∞

A . We
are now interested in the following three subsets of Rk.

K :=
{

α ∈ Rk : Fα 6= /0

}
,

L :=

{
Q(µ) =

(Z
I dµ
)−1 Z

J dµ : µ ∈ M (E∞
A ,σ)

}
,(1.1)

M := ∇β

(
Rk
)

,

where β : Rk → R is the convex differentiable function defined in terms of some pressure
function within Proposition 3.1. Since I > − logs, the sets K,L,M ⊂ Rk are all bounded.
Since E∞

A is finitely irreducible (see Def. 2.1) we have for all v ∈V

K = {α : Fα (v) 6= /0} .

Our first main theorem relates the three sets in (1.1).

Theorem 1.1. The set K is compact and we have IntL ⊂ M ⊂ L and M ⊂ K ⊂ L.

Remark. For the finite alphabet case (i.e. E is a finite set) the inclusion K ⊂ L is well-
known for the one dimensional situation (i.e. k = 1) and equality of K and L is also
proved for k ≥ 1 in [2]. The proof uses the fact that for x ∈ Fα 6= /0 the set of measures{

µn := n−1
∑

n−1
i=0 δσix : n ∈ N

}
always possesses a weak convergent subsequence with limit

measure µ such that Q(µ) = α. This gives α ∈ L. Also, since in the finite alphabet case
M (E∞

A ,σ) is compact and Q is continuous with respect to the weak-* topology we have
IntL = L. Hence the above theorem gives in this situtation L = IntL⊂M ⊂ K. This shows
that L = K in the finite alphabet case.

If some additional regularity conditions are satisfied we get the following stronger results.

Theorem 1.2. Suppose that Ji are linearly independent as cohomology classes. Then M is

an open convex domain, L ⊂ IntL, and in particular

L = M = K.

If additionally 0 ∈ M then L = M = K.

Our third theorem gives the multifractal formalism in the higher-dimensional situation. If
0 ∈ M then our description is complete in the sense that the formula for the Hausdorff
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dimension holds not only for α form the interior of K but for all α ∈Rk. This result is also
new in the finite alphabet case. Recall that the (negative) Legendre transform β̂ : Rk → R
of β is given by

β̂(a) := inf
t∈Rk

(β(t)−〈t,a〉) .

For the following let HD(A) denotes the Hausdorff dimension of the set A.

Theorem 1.3. Suppose that Ji are linearly independent as cohomology classes. Then we

have for α ∈ M and v ∈V

HD(Fα (v)) = β̂(α)

and for all α ∈ Rk we have

(1.2) HD(Fα (v))≤ max
{

β̂(α) ,0
}

.

If additionally 0 ∈ M then equality holds in (1.2).

A detailed study of the multifractal level sets and variational formulae for the entropy in the
finite alphabet setting can be found in [2]. Compairing the finite with the infinite alphabet
case we mainly encounter the following obstacles. The shift space E∞

A is not even locally
compact and hence also M (E∞

A ,σ) is not compact with respect to the weak-* topology.
The function Q is in general not continuous but only upper semi-continuous with respect
to the weak-* topology on M (E∞

A ,σ). This follows from the fact that

(1.3) µ 7→
Z
−I dµ

is upper semi-continuous and I ≥ const. > 0. In Remark 4.1 we take as an example mea-
sures µ,µ1,µ2, . . . ∈ M (E∞

A ,σ) such that µn
∗→ µ,

R
I dµ < +∞,

R
I dµn < +∞, n ∈ N, but

nevertheless liminf
R

I dµn >
R

I dµ. Finally, the entropy map µ 7→ hµ (σ) is not even upper
semi-continuous (cf. [3]) and the pressure functions under consideration (cf. Proposition
3.1) is only defined in some open region.

We would finally like to remark that the study of higher dimensional multifractal value sets
for infinite GDMS naturally arose in [4] where a multifractal formalism has been developed
in order to study the distributions of limiting modular symbols introduced by Manin and
Marcolli in [5].

2. CONFORMAL GRAPH DIRECTED MARKOV SYSTEMS

In this section we begin our study of graph directed Markov systems. Let us recall the
definition of these systems taken from [1]. Graph directed Markov systems are based upon
a directed multigraph and an associated incidence matrix, (V,E, i, t,A). The multigraph
consists of a finite set V of vertices and a countable (either finite or infinite) set of directed
edges E ⊂ N and two functions i, t : E → V . For each edge e, i(e) is the initial vertex of
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the edge e and t(e) is the terminal vertex of e. The edge goes from i(e) to t(e). Also,
a function A : E ×E → {0,1} is given, called an (edge) incidence matrix. It determines
which edges may follow a given edge. So, the matrix has the property that if Auv = 1,
then t(u) = i(v). We will consider finite and infinite walks through the vertex set consistent
with the incidence matrix. Thus, we define the set of infinite admissible words E∞

A on an
alphabet A,

E∞
A = {ω ∈ E∞ : Aωiωi+1 = 1 for all i ≥ 1},

by En
A we denote the set of all subwords of E∞

A of length n ≥ 1, and by E∗
A we denote the

set of all finite subwords of E∞
A . We will consider the left shift map σ : E∞

A → E∞
A defined

by σ(ωi) := (ωi+1)i≥1. Sometimes we also consider this shift as defined on words of finite
length. Given ω ∈ E∗ by |ω| we denote the length of the word ω, i.e. the unique n such
that ω ∈ En

A. If ω ∈ E∞
A and n ≥ 1, then

ω|n = ω1 . . .ωn.

For ω ∈ E∞
A , or ω ∈ E∗

A with |ω| ≥ n we will denote with

Cn (ω) := {x ∈ E∞
A : x|n = ω|n}

the cylinder set of length n containing ω.

Definition 2.1. E∞
A (or equivalently the GDMS Φ) is called finitely irreducible if there

exists a finite set W ⊂ E∗
A such that for each ω,η ∈ E we find w ∈W such that the concate-

nation ωwη ∈ E∗
A.

We recall from the introduction that a Graph Directed Markov System (GDMS) now con-
sists of a directed multigraph and incidence matrix together with a family of non-empty
compact metric spaces (Xv)v∈V , a number s ∈ (0,1), and for every e ∈ E, a injective con-
traction φe : Xt(e) → Xi(e) with a Lipschitz constant not exceeding s. We now describe its
limit set. For each ω ∈ E∗

A, say ω ∈ En
A, we consider the map coded by ω,

φω := φω1 ◦ · · · ◦φωn : Xt(ωn) → Xi(ω1).

For ω∈E∞
A , the sets

{
φω|n

(
Xt(ωn)

)}
n≥1 form a descending sequence of non-empty compact

sets and therefore
T

n≥1 φω|n
(
Xt(ωn)

)
6= /0. Since for every n ∈ N, diam

(
φω|n

(
Xt(ωn)

))
≤

sn diam
(
Xt(ωn)

)
≤ sn max{diam(Xv) : v ∈V}, we conclude that the intersection\

φω|n
(
Xt(ωn)

)
∈ Xi(ω1)

is a singleton and we denote its only element by π(ω). In this way we have defined the
coding map

(2.1) π = πΦ : E∞
A → X :=

M
v∈V

Xv
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from E∞ to
L

v∈V Xv, the disjoint union of the compact sets Xv. The set

Λ = ΛΦ = π(E∞
A )

will be called the limit set of the GDMS Φ.

Definition 2.2. We call a GDMS conformal (CGDMS) if the following conditions are
satisfied.

(a) For every vertex v ∈V , Xv is a compact connected subset of a Euclidean space Rd

(the dimension d common for all v ∈V ) and Xv = Int(Xv).
(b) (Open set condition (OSC)) For all a,b ∈ E, a 6= b,

φa
(
Int(Xt(a)

)
∩φb

(
Int(Xt(b)

)
= /0.

(c) For every vertex v ∈ V there exists an open connected set Wv ⊃ Xv such that for
every e ∈ I with t(e) = v, the map φe extends to a C1 conformal diffeomorphism
of Wv into Wi(e).

(d) (Cone property) There exist γ, l > 0, γ < π/2, such that for every x ∈ X ⊂Rd there
exists an open cone Con(x,γ, l)⊂ Int(X) with vertex x, central angle of measure γ,
and altitude l.

(e) There are two constants L ≥ 1 and α > 0 such that∣∣|φ′e(y)|− |φ′e(x)|∣∣≤ L‖(φ′e)−1‖−1‖y− x‖α

for every e ∈ I and every pair of points x,y ∈ Xt(e), where |φ′ω(x)| means the norm
of the derivative.

The following remarkable fact was proved in [1].

Proposition 2.3. If d ≥ 2 and a family Φ = (φe)e∈I satisfies conditions (a) and (c), then it

also satisfies condition (e) with α = 1.

The following rather straightforward consequence of (4e) was proved in [1].

Lemma 2.4. If Φ = (φe)e∈I is a CGDMS, then for all ω ∈ E∗ and all x,y ∈Wt(ω), we have∣∣log |φ′ω(y)|− log |φ′ω(x)|
∣∣≤ L

1− s
‖y− x‖α.

As a straightforward consequence of (e) we get the following.

(f) (Bounded distortion property). There exists K ≥ 1 such that for all ω ∈ E∗ and all
x,y ∈ Xt(ω)

|φ′ω(y)| ≤ K|φ′ω(x)|.
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Next we define the geometrical potential function associated with Φ by

I = IΦ : E∞
A → R+, IΦ (ω) :=− log

∣∣φ′ω1
(π(σ(ω)))

∣∣ .
It was proved in [1] that for each t ≥ 0 the following limit exists (possibly be equal to +∞).

p(t) := P (−tI) := lim
n→∞

1
n

log ∑
ω∈En

A

exp(−tSnI (ω)) = lim
n→∞

1
n

log ∑
ω∈En

A

||φ′ω||t ,

where SnI (ω) := sup{x:x|n=ω}∑
n−1
i=0 I

(
σix
)
. This number is called the topological pressure

of the parameter t. The function p is always non-increasing and convex. In [1] a useful
parameter associate with a CGDMS has been introduced. Namely,

θ(Φ) := inf{t : p(t) < +∞}= sup{t : p(t) = +∞}.

Let Fin(E) denote the family of all finite subsets of E. The following characterization of
hΦ = HD(ΛΦ) (also denoted by hE ), the Hausdorff dimension of the limit set ΛΦ, being a
variant of Bowen’s formula, was proved in [1] as Theorem 4.2.13.

Theorem 2.5. If the a CGDMS Φ is finitely irreducible, then

HD(ΛΦ) = inf{t ≥ 0 : p(t) < 0}= sup{hF : F ∈ Fin(I)} ≥ θ(Φ).

If p(t) = 0, then t is the only zero of the function p(t), t = HD(ΛΦ) and the system Φ is

called regular.

In fact it was assumed in [1] that the system Φ is finitely primitive but the proof can be
easily improved to this slightly more general setting. It will be convenient for us to recall
and make use of the following definitions.

Definition 2.6. A CGDMS is said to be strongly regular if there exists t ≥ 0 such that
0 < p(t) < ∞. A family (φi)i∈F is said to be a co-finite subsystem of a system of Φ = (φi)i∈E

if F ⊂ E and the difference E \F is finite.

Definition 2.7. A CGDMS is said to be co-finitely regular if each of its co-finite subsystem
is regular.

The following fact relating all these three notions can be found in [1].

Proposition 2.8. Each co-finitely regular system is strongly regular and each strongly

regular system is regular.

Note that the system Φ is strongly regular if and only if HD(ΛΦ) > θ(Φ).
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3. HIGHER-DIMENSIONAL THERMODYNAMIC FORMALISM

From now on let us assume that the CGDMS is infinite, i.e. card(E) = ∞ and hence
θ(Φ)≥ 0, and co-finitely regular. Recall that for ω,τ ∈ E∞

A , we define ω∧ τ ∈ E∞
A ∪E∗

A to
be the longest initial block common to both ω and τ. We say that a function g : E∞

A → R is
Hölder continuous with an exponent α > 0 if

vα( f ) := sup{Vα,n( f ) : n ≥ 1}< ∞,

where
Vα,n( f ) = sup{| f (ω)− f (τ)|eα(n−1) : ω,τ ∈ E∞

A and |ω∧ τ| ≥ n}.

For every α > 0 let Kα be the set of all real-valued Hölder continuous (not necessarily
bounded) functions on E∞

A . Set

K s
α :=

{
f ∈ Kα : ∑

e∈E
exp
(
sup
(

f |C1(e)
))

< +∞

}
.

Each member of K s
α is called an α-Hölder summable potential.

For fixed k ∈N let J : E∞
A →Rk such that Ji ∈Kα is a bounded Hölder continuous function

for i = 1, . . . ,k. The following proposition will be of central importance throughout this
paper.

Proposition 3.1. Each member of the family
(
〈t,J〉−βI : t ∈ Rk,β > θ

)
is an element of

K s
α . The pressure functional

p : Rk× (θ,∞)→ R, p(t,β) := P (〈t,J〉−βI)

is a well-defined, real-analytic, convex function. For each t ∈ Rk there exists a unique

number β(t) such that p(t,β(t)) = 0. Also t 7→ β(t) defines a real-valued, real-analytic

convex function on Rk. Its gradient is given by

(3.1) ∇β(t) =
1R

I dµt

Z
J dµt ,

where µt = µt,β(t) denotes the unique invariant Gibbs measure for the potential 〈t,J〉 −
β(t) I, i.e. there exists C > 0 such that for all ω ∈ E∞

A we have

(3.2) C−1 ≤ µtCn (ω)
expSn (〈t,J〉−β(t) I)(ω)

≤C.

Proof. The properties of the family
(
〈t,J〉−βI : t ∈ Rk,β > θ

)
follows immediately from

the boundedness of J and the Hölder continuity of I. From [1] we then know that p is a
well-defined and real-analytic function. Since the system is infinite and co-finitely regular
we have limβ↘θ p(t,β) = +∞. Furthermore for every t ∈ Rk, we have

∂β p(t,β) =−
Z

I dµt,β ≤ logs < 0.
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Hence for every t ∈Rk, β 7→ p(t,β) is a strictly decreasing function and limβ→+∞ p(t,β) =
−∞. From this we conclude that for each t ∈ Rk there exists a unique number β(t) > θ

such that p(t,β(t)) = 0. By the implicit function theorem also β : Rk → R is real-analytic
and convex. The formula for the gradient of β follows again from the implicit function
theorem. �

Lemma 3.2. Any set of measures M ⊂ M (E∞
A ,σ) such that supµ∈M

R
I dµ < +∞ is tight.

Proof. For every i, ` ∈ N put

Ei,` := {ω ∈ E∞
A : ωi ≥ `} .

Then we have for all µ ∈ M

const. ≥
Z

I dµ ≥
Z

E1,`

I dµ ≥ µ(E1,`) inf
E1,`

I.

Combining this with the fact that Ei,` ⊂ σ−i+1 (E1,`) and that µ is σ–invariant we get

µ(Ei,`)≤ µ(E1,`)≤
const.

infE1,`
I
.

Now, fix ε > 0. It follows from the above estimate that for every i ≥ 1 there exists
`i ≥ 1 such that µ(Ei,`i) < 2−iε. Then

S
∞
i=1 Ei,`i is the complement of the compact set

{ω ∈ E∞
A : ∀i ∈ N : ωi < `i} and

µ

(
∞[

i=1

Ei,`i

)
≤

∞

∑
i=1

µ(Ei,`i)≤
∞

∑
i=1

2−i
ε = ε for all µ ∈ M.

From this the tightness of M follows. �

4. PROOFS

Clearly since I >− logs and J is bounded, the sets K,L,M ⊂ Rk are all bounded.

Proof of Theorem 1.1. The inclusion M ⊂ L follows immediately from the definitions and
(3.1).

Let us first show that α = 0 is always an element of K and L. To see this we construct
a Bernoulli measure µp (which is invariant and ergodic) with probability vector p := (pi)
chosen in such a way that ∑ pi inf I|C1(i) = +∞, which is always possible. Then |Q(µp)|=∣∣∣ R

J dµpR
I dµp

∣∣∣ ≤ const.
+∞

= 0 and also for µp–almost all points ω ∈ E∞
A we have by the ergodic

theorem that limn→∞
SnJ(ω)
SnI(ω) = Q(µp) = 0.

Proof of ’IntL ⊂ M’.
Here we follow some ideas from [2]. Let α ∈ IntL. Then there exists r > 0 such that
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Br (α)⊂ L. Let

Dα := sup
µ∈Q−1(α)

{
h(µ)R

I dµ

}
, α 6= 0.

By the variational principle (cf. [1, Theorem 2.1.7]) it follows that

0 = P (HD(ΛΦ) I)≥ h(µ)−HD(ΛΦ)
Z

I dµ

and hence Dα is always dominated by the Hausdorff dimension HD(ΛΦ). Let us now
consider the family of potentials

(〈q,J〉− (〈q,α〉+Dα) I : q ∈ Gα) ,

where Gα :=
{

x ∈ Rk : 〈x,α〉+Dα > θ
}

. Firstly, we show for all q ∈ Gα

pα (q) := P(〈q,J〉− (〈q,α〉+Dα) I)≥ 0.

Indeed, by the variational principle we have

pα (q) ≥ sup
µ∈Q−1(α)

{
hµ +

〈
q,

Z
J dµ

〉
− (〈q,α〉+Dα)

Z
I dµ
}

≥ sup
µ∈Q−1(α)

{Z
I dµ

(
hµR
I dµ

−Dα

)}
≥ const. sup

µ∈Q−1(α)

{
hµR
I dµ

−Dα

}
= 0.

Here we used the fact that supµ∈Q−1(α)
R

I dµ is bounded above by some constant for α 6= 0.

Next we show that the infimum infq∈Gα
pα (q) is attained at some point q ∈ Gα. This

follows from the fact that pα (qn) diverges to infinity whenever either 〈qn,α〉+ Dα → θ,
n → ∞, which is clear, or |qn| → ∞ which can be seen as follows. For q = (q1, . . . ,qk) let
βi := αi + r/2signqi, i = 1, . . . ,k and µ ∈ Q−1 (β). Then we have

pα (q) ≥ hµ +
〈

q,
Z

(J−αI) dµ
〉
−Dα

Z
I dµ

= hµ + 〈q,(β−α)〉
Z

I dµ−Dα

Z
I dµ

= hµ +(〈q,(β−α)〉−Dα)
Z

I dµ

≥

(
r
2

k

∑
i=1
|qi|−HD(ΛΦ)

)
(− logs) .(4.1)

Now the right hand side diverges to infinity for |q| → ∞ showing that the infimum must be
attained in some uniformly bounded region, say in qα ∈ Gα. Since pα is real-analytic on
Gα we have

(4.2) 0 = ∇pα (qα) =
Z

J−αI dµqα
=⇒ α =

R
J dµqαR
I dµqα

,
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where µqα
is the Gibbs measure for the potential (〈qα,J〉− (〈qα,α〉+Dα) I). And hence,

by the variational principle, we have

p(qα) = hµqα
−Dα

Z
I dµqα

≥ 0 =⇒ Dα ≤
hµqαR
I dµqα

.

By definition of Dα we actually have equality and hence p(qα) = 0. This, (4.2) and Propo-
sition 3.1 show that α = ∇β(qα) for α 6= 0.

Now we consider the case α = 0. If 0 ∈ ∂L then nothing has to be shown. If 0 ∈ Int(L)
then also Br (0)⊂ Int(L) for some small r > 0 and by the above we have Br (0)\{0} ⊂M.
The convexity of β then implies that β has a minimum in Rd and since β is real-analytic
this minimum is unique, say in t0, with ∇β(t0) = 0. This shows that also 0 ∈ M.

Proof of ’K ⊂ L’.
Let α ∈ K and without loss of generality not equal to zero. Then there exist ω ∈ E∞

A

such that limn→∞
SnJ(ω)
SnI(ω) = α. Now, for every n ∈ N there exists by the finite irreducibility

condition a word wn ∈W such that the periodic element xn := (ω|nwn)
∞ belongs to E∞

A .
The point xn gives then rise to the invariant probability measure

µn :=
1
kn

kn−1

∑
j=0

δσ jxn
∈ M (E∞

A ,σ) ,

where kn := n + |wn| . By the Hölder continuity (bounded distortion) and the finiteness of
W we estimateR

J dµnR
I dµn

=
Skn J (xn)
Skn I (xn)

=
SnJ (xn)+O(1)
SnI (xn)+O(1)

=
SnJ (ω)+O(1)
SnI (ω)+O(1)

,(4.3)

where O denotes the Landau symbol. Since SnI growth at least like −n logs the above
quotient converges to α as n → ∞. This shows α ∈ L.

Proof of compactness of K.
Since we know that K is bounded, we are left to show that the set is closed. As mentioned
above 0 ∈ K, hence we may consider without loss of generality a sequence (αk) ∈ KN

converging to α ∈ Rk \ {0}. We are going to construct inductively an element ω ∈ E∞
A

such that lim SnJ(ω)
SnI(ω) = α. Fix a sequence εk ↘ 0 such that |αk−α| < εk/2. Using the

observation in (4.3) we find for each k ∈ N a periodic element xk = p∞
k ∈ E∞

A , mk := |pk|,
such that

∣∣∣ Smk J(xk)
Smk I(xk)

−αk

∣∣∣< εk
2 which gives∣∣∣∣Smk J (xk)

Smk I (xk)
−α

∣∣∣∣< εk

We begin the induction by defining ω1 := pl1
1 w1 with l1 = 1.
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Suppose we have already defined ωk := pl1
1 w1 · · · plk

k wk for some k ∈ N and let

Nk :=
k

∑
i=1

limi + |wi| .

Then choose wk+1 ∈W such that ωkwk+1 pk+1 ∈ E∗
A and lk+1 ∈ N large enough such that

1
− logs

· 1
lk+1kk+1

max
{

Smk+2 I (xk+2) ,Smk+2 |J (xk+2)|
}
≤ εk+1.

In this way we define inductively the infinite word ω :=
(

pli
i wi

)∞

i=1
∈ E∞

A .

We will need the following observation. Suppose we have two sequences (an) ∈
(
Rd
)N

and (bn) ∈ (R+)N such that b−1
n an → α and liminfn bn > 0. Define AN := ∑

N
k=1 ak and

BN := ∑
N
k=1 bk. Let o denote the Landau symbol. Then for any two sequences (cn) and

(dn) given by cn := Akn + o(Bkn) and dn := Bkn + o(Bkn) for some sequence (kn) ∈ NN

tending to infinity, we have d−1
n cn → α.

For n ∈ N we define a sequence (kn) ∈ NN such that Nkn ≤ n < Nkn+1, and rn, `n such that
n = Nkn +qn ·mkn+1 +rn with 0≤ rn ≤mkn+1 and 0≤ qn ≤ `kn+1. Then applying the above
observation to

SnJ (ω) =
kn

∑
i=1

liSmiJ (xi)+qnSmkn+1J (xkn+1)+O(Srn J (xkn+1))+O(kn)

and

SnI (ω) =
kn

∑
i=1

liSmi I (xi)+qnSmkn+1 In (xkn+1)+O(Srn I (xkn+1))+O(kn)

and observing the definition of (`k) the claim follows.

Proof of ’M ⊂ K’.
Since we have already seen that K is closed it suffices to prove M ⊂K. Let α = ∇β(t)∈M.
Then for the Gibbs measure µt we have α = (

R
I dµt)

−1 R
J dµt . By the ergodicity of µt we

have for µt -a.e. x ∈ E∞
A that limn→∞

SnJ(x)
SnI(x) = α and hence α ∈ K. �

Proof of Theorem 1.2. For Ji linearly independent as cohomology classes it is well known
that β is strictly convex, or equivalently the Hessian Hess(β) is strictly positive definite.
From this it follows that ∇β : Rk →∇β

(
Rk
)

is a diffeomorphism and hence M := ∇β
(
Rk
)

is an open and connected subset of Rk.

Proof of ’L ⊂ IntL’.
Since /0 6= M ⊂ IntL we may use similar arguments as in [2] to prove that in this situ-
ation we have L ⊂ IntL. Let α = Q(m0) ∈ L. Since IntL is not empty we find mea-
sures m1, . . . ,mk such that

( R
J dm1R
I dm1

−α, . . . ,
R

J dmkR
I dmk

−α

)
form a basis of Rk. For p ∈ ∆ :=
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u ∈ Rk : ui ≥ 0 ∧ ∑l ul ≤ 1

}
we define µp := ∑

k
l=1 plml +(1−∑ pl)m0. Then the deriva-

tive of b : ∆ → Rk, b(p) = Q(µp) is given by

∂bi

∂p j
(0) =

(
R

Ji dm j −
R

Ji dm0)R
I dm0

−
R

Ji dm0 (
R

I dm j −
R

I dm0)

(
R

I dm0)
2

=
R

Ji dm j −αi
R

I dm jR
I dm0

.

By our assumption also
( R

I dm1R
I dm0

( R
J dm1R
I dm1

−α

)
, . . . ,

R
I dmkR
I dm0

( R
J dmkR
I dmk

−α

))
are linearly inde-

pendent, and hence db
d p is invertible. This shows that there exists an open set U ⊂ ∆ such

that 0 ∈U and b : U → b(U) is an diffeomorphism. We finish the argument by observing
that α ∈ b(U)⊂ IntL.

Proof of ’L = M for 0 ∈ M’.
Since IntL ⊂ M ⊂ L ⊂ IntL we have M = L. It now suffices to show that M ⊂ L since
the inclusion L = M ⊂ L ⊂ L would then imply that L = M. To see that indeed M ⊂ L

we proceed as follows. Recall that by our assumptions 0 ∈ M. Let α ∈ ∂M, which is
then necessary different from 0. Let (αn) ∈ MN be a sequence converging to α. For this
sequence we find a sequence of Gibbs measures

(
µsk

)
(for the potential 〈sk,J〉−β(sk) I)

such that
(R

I dµsk

)−1 R
J dµsk converges to α and |sk| → ∞. In particular, we have that(R

I dµsk

)
is bounded . By Lemma 3.2 this sequence of measures is tight and hence there is

a weak convergent subsequence µtk → µ ∈ M (E∞
A ,σ). Now we have to show that Q(µ) =

α. We clearly have
R

J dµtk →
R

J dµ = v since J is bounded and by (1.3) we also have

(4.4) liminf
k→∞

Z
I dµtk ≥

Z
I dµ.

To show that also limsupk→∞

R
I dµtk ≤

R
I dµ we make use of the variational principle.

Indeed we have

0 = h
(
µtk

)
+
〈

tk,
Z

J dµtk

〉
−β(tk)

Z
I dµtk ≥ hµ +

〈
tk,

Z
J dµ

〉
−β(tk)

Z
I dµ

This gives

(4.5)
Z

I dµ ≥
hµ−hµtk

β(tk)
+
〈

β(tk)
−1 · tk,

Z
J dµ−

Z
J dµtk

〉
+

Z
I dµtk .

Since
0 ≤ hµt ≤ HD(ΛΦ)

Z
I dµt

and
R

I dµtk is bounded we conclude that hµt is bounded. The assumption 0∈M implies that
|tk|/β(tk) is bounded (cf. [6, Theorem 3.26]). As J is a bounded function we also haveR

J dµ−
R

J dµtk → 0 and hence taking limits in (4.5) gives limsupk→∞

R
I dµtk ≤

R
I dµ.

Combining this with (4.4) finally proves Q(µ) = α.

The remaining parts of the theorem are an immediate application of Theorem 1.1. �
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Remark 4.1. We would like to emphasis that, unlike above, for µ,µ1,µ2, . . . ∈ M (Σ∞
E ,σ)

with µn
∗→ µ and

R
I dµ < +∞,

R
I dµn < +∞, n ∈ N, the convergence

R
I dµn →

R
I dµ

does not hold in general. For a counter example we consider the iterated function system
generated by continued fractions, i.e.

Φ := (φk : [1,0]→ [1,0] ,x 7→ 1/(x+ k) : k ∈ N) .

Fix M > 0 to be large; cn := 1−M/ log(n), n > exp(M); S := ∑
∞
k=1 k−2 and

(
p(n)

k

)
k∈N

a
probability vector such that

p(n)
k :=


0 if k > n,

S−1cnk−2 if k < n,(
1−S−1cn ∑

n−1
j=1 j−2

)
if k = n.

Let µn be the Bernoulli measure associated with
(

p(n)
k

)
k∈N

. Then (µn)n>expM converges

weakly to the Bernoulli measure associated with the probability vector
(
S−1k−2

)
k∈N. We

then haveZ
I dµ ≤ 2S−1

∑
k∈N

log(k +1)
k2 < +∞

Z
I dµn ≤ 2

(
1−S−1cn

n−1

∑
j=1

j−2

)
log(n+1)+

n−1

∑
k=1

2S−1cn
log(k +1)

k2

≤ 2
(

1−S−1cn

(
S− c

n

))
log(n+1)+2S−1

n−1

∑
k=1

cn
log(k +1)

k2

≤ 2
(

M
logn

+
cS−1

n

)
log(n+1)+2S−1

n−1

∑
k=1

cn
log(k +1)

k2

≤ 4M +2S−1
n−1

∑
k=1

cn
log(k +1)

k2 < +∞,

for some constant c > 0 and M sufficiently large. On the other handZ
I dµn ≥

Z
C1([1,...])

I dµ ≥ 2

(
1−S−1cn

∞

∑
j=1

j−2

)
logn

≥ 2(1− cn) logn = 2M ≥ 2
Z

I dµ,

for M large enough. Hence in this example, we have

liminf
k→∞

Z
I dµn >

Z
I dµ.

For the proof of Theorem 1.3 we need the following lemma from convex analysis adapted
to our situation. For an extended real-valued function f : Rk → R we define the effective
domain

dom f :=
{

x ∈ Rk : f (x) >−∞

}
.
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Lemma 4.2. Under the conditions of Theorem 1.3 we have M = Int
(

dom β̂

)
is a non-

empty convex set. Furthermore for each a ∈ M and α ∈ ∂M we have

(4.6) λα+(1−λ)a ∈ M for all λ ∈ [0,1), and lim
λ→1

β̂(λα+(1−λ)a) = β̂(α) .

In particular, we have

(4.7) M = dom β̂.

Proof. Since Int
(

dom β̂

)
⊂ M ⊂ dom β̂ (cf. [7, Theorem 23.4]) and M is open we have

M = Int
(

dom β̂

)
and hence the convexity of dom β̂ implies the convexity of M. Conse-

quently, (4.6) immediately follows from [7, Theorem 6.1] and [7, Corollary 7.5.1].

Clearly by the definition of dom β̂, we have β̂(α) =−∞ for α 6∈M = dom β̂. The finiteness
of β̂ on M follows from (4.6) and the fact that 0 ≤ β̂(a) ≤ HD(ΛΦ) for all a ∈ M. This
shows (4.7). �

Now we are in the position to give a proof of the first part of Theorem 1.3.

Proof of the first part of Theorem 1.3. We split the proof of this theorem in two parts -
upper bound and lower bound.

For the upper bound we actually show a little more. Namely, for λ ∈ (0,1) and α ∈ M we
consider aλ := α0 +λ(α−α0), where α0 := ∇β(0) is the unique maximum of β̂. For

Gaλ
(v) :=

{
ω ∈ E∞

A : i(ω1) = v,∃`≥ λ : lim
k→∞

SkJ (ω)
SkI (ω)

= α0 + `(α−α0)
}

we prove

(4.8) HD
(
Gaλ

(v)
)
≤ β̂(aλ) .

Because then we have by the monotonicity of the Hausdorff dimension and (4.6)

HD(Fα (v))≤ HD
(
Gaλ

(v)
)
≤ β̂(aλ)→ β̂(α) for λ → 1.

To prove (4.8) let us first define b : (0,1)→R, λ 7→ β̂(aλ). Then b′ (λ) =−〈t (aλ) ,α−α0〉
is non-positive since α0 is the unique maximum of the strictly concave function β̂. Let
µt(aλ) denote the Gibbs measure for 〈t (aλ) ,J〉−β(t (aλ)) I. Then by the above we have for

every ω ∈ Gaλ
(v), say limk→∞

SkJ(ω)
SkI(ω) = α0 + `(α−α0) for some `≥ λ, and some ε ≥ 0

µt(aλ) (Cn (ω)) � exp(〈t (aλ) ,SnJ (ω)〉−β(t (aλ))SnI (ω))

= exp
(
−SnI (ω)

(
−
〈

t (aλ) ,
SnJ (ω)
SnI (ω)

〉
+β(t (aλ))

))
� exp

(
−SnI (ω)

(
β̂(aλ)+ ε− (`−λ)〈t (aλ) ,α−α0〉

))
� |π(Cn (ω))|β̂(aλ)+ε .
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Now consider a sequence of balls (B(π(ω) ,rn))n∈N with center in π(ω) ∈ Xv and radius
rn := |π(Cn (ω))|, where |A| denotes the diameter of the set A ⊂ Rk. Then we have for all
ε > 0

µt(aλ) ◦π
−1 (B(π(ω) ,rn)) � µt(aλ) (Cn (ω))� rβ̂(aλ)+ε

n .

Hence by standard arguments from geometric measure theory (cf. [8, 9]), the upper bound
in (4.8) follows.

For the lower bound we first consider α = ∇β(t) ∈ M. Since
R

I dµt < +∞ we have by [1,
Theorem 4.4.2] and the variational principle that

HD
(
µt ◦π

−1)=
hµtR
I dµt

=
β(t)

R
I dµt −〈t,

R
J dµt〉R

I dµt
= β̂(α) .

Since by Birkhoff’s ergodic theorem we have µt
(
π−1 (Fα)

)
= 1 the above equality gives

β̂(α) = HD
(
µt ◦π

−1)≤ HD(Fα) .

The fact that by finite irreducibility HD(Fα) = HD(Fα (v)) for all v ∈V finishes the proof
of the lower bound for α ∈ M.

For α ∈ {M we have on the one hand that β̂(α) = −∞ by (4.7) and on the other hand by
Theorem 1.2 that HD(Fα (v)) = HD( /0) = 0. This proves the theorem for α ∈ {M. �

Before giving the proof of the remaining part of Theorem 1.3 we need the following propo-
sition. Since from [3] we know that the entropy map is in our situation not upper semi-
continuous in general this proposition might be of some interest for itself.

Proposition 4.3. We assume that 0 ∈ M and let (tk) be a sequence in Rk with |tk| →
+∞ such that the sequence of Gibbs measures µk := µtk converge weakly to some µ ∈
M (E∞

A ,σ). Then µ is supported on a subshift of finite type over a finite alphabet and we

have

(4.9) limsup
k

hµk ≤ hµ.

Proof. Since 0 ∈ M guarantees that |tk|/β(tk) stays bounded for k → ∞ (cf. “Proof of
’L = M for 0 ∈ M”’) , J is a bounded, and I an unbounded function we find for n ∈ N and
D > 0 an N ∈ N such that for

ω ∈ {x ∈ Σ
n
A : ∃m ∈ {1, . . . ,n} xm ≥ N}=: Σ

n
A (N)

we have

(4.10)
(〈

1
β(tk)

tk,SnJ (ω)
〉
−SnI (ω)

)
<−D.

Using estimates from the proof of Theorem 2.3.3 in [1] (Gibbs property) one verifies that
the constant C in (3.2) is always less or equal to exp(K(β(t)+ |t|)) for some positive
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constant K. Combining this fact, the Gibbs property (3.2) and (4.10) then gives that

(4.11) µ(Cn (ω)) = 0 for all ω ∈ Σ
n
A (N) .

Since µ is shift invariant it must be supported on a subshift contained in the full shift
{1, . . . ,N−1}N.

To show (4.9) we set for ν ∈ M (Σ∞
A ,σ)

Hn (ν) :=− ∑
ω∈Σn

A

ν(Cn (ω)) logν(Cn (ω)) .

It then suffices to verify for all n ∈ N

(4.12) Hn (µk)→ Hn (µ) for k → ∞.

To see this note that hµ = lim 1
n Hn (µ) = inf 1

n Hn (µ). For m,k ∈ N we have

hµk = inf
n

1
n

Hn (µk)−
1
m

Hm (µk)︸ ︷︷ ︸
≤0

+
1
m

Hm (µk)−
1
m

Hm (µ)+
1
m

Hm (µ)

≤ 1
m

Hm (µk)−
1
m

Hm (µ)︸ ︷︷ ︸
→0, as k→∞

+
1
m

Hm (µ)

implying limsuphµk ≤
1
m Hm (µ) . Taking the infimum over m ∈ N gives (4.9). Indeed we

have

Hn (µk) = − ∑
ω∈Σn

A

µk (Cn (ω)) logµk (Cn (ω))

= − ∑
ω∈Σn

A\Σn
A(N)

µk (Cn (ω)) logµk (Cn (ω))

− ∑
ω∈Σn

A(N)
µk (Cn (ω)) logµk (Cn (ω)) .

The first sum has only finitely many summands and will therefore converge to the sum
−∑ω∈Σn

A\Σn
A(N) µ(Cn (ω)) logµ(Cn (ω)) as k tends to infinity. Using the Gibbs property with

constant C = exp(K(β(t)+ |t|)) one finds that the second sum is summable and dominated
by

exp(K (|tk|+β(tk))) ∑
ω∈Σn

A(N)
(Sn (−〈tk,J〉+β(tk) I)(ω)+K (|tk|+β(tk)))

×exp(Sn (〈tk,J〉−β(tk) I)(ω))

The inequality in (4.10) guarantees that for N sufficiently large this upper bound converges
to 0 as k → ∞. Hence, using (4.11) we conclude Hn (µk)→ Hn (µ) for k → ∞. �
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Proof of the second part of Theorem 1.3. Now we consider the special situation in which
0 ∈ M. Let α ∈ ∂M. Then from the “Proof of ’L = M for 0 ∈ M’ ” we know that there
exists be a sequence of Gibbs measures µk := µtk converging weakly to some µ∈M (E∞

A ,σ)
such that (

R
I dµk)

−1 R
J dµk =: αk lie on a line segment in M for all k ∈ N and converge

to α = (
R

I dµ)−1 R
J dµ. Since µ is supported on a subshift of finite type over a finite

alphabet we may apply results from [10, Appendix] (which generalize results from [11]).
Let G (µ) :=

{
π(x) : x ∈ Σ∞

A , 1
n ∑

n−1
k=0 δ

σkx
∗→ µ
}

be the set of the µ generic points. Then it
has been shown in [10, Appendix] that there exists a Borel probability measure m on E∞

A

and a Borel set M ⊂ E∞
A such that π(M)⊂ G (µ), m(M) = 1 and for all x ∈ M we have

liminf
n→∞

log(m(Cn (x)))
log |π(Cn (x))|

=
hµR
I dµ

and lim
n

log |π(Cn (x))|
−n

=
Z

I dµ.

Now we argue similar as in the proof of Theorem 4.4.2 in [1] to conclude that HD(M) ≥
(
R

I dµ)−1 hµ. Fix ε > 0 small enough. Then by Egorov’s Theorem, there exists a Borel set
M′ ⊂ M and n0 ∈ N such that m(M′) > 0 and for all n ≥ n0 and x ∈ M′ we have

log(m(Cn (x)))
log |π(Cn (x))|

≥
hµR
I dµ

− ε and
log |π(Cn (x))|

−n
≤

Z
I dµ+ ε.

This gives for all n ≥ n0, x ∈ M′

m(Cn (x))≤ |π(Cn (x))|
hµR
I dµ−ε and e−n(

R
I dµ+ε) ≤ |π(Cn (x))| ≤ e−n(

R
I dµ−ε).

We fix 0 < r < exp(−n0 (
R

I dµ+ ε)) and for x ∈ M′ let n(x,r) be the least number n such
that |π(Cn+1 (x))| < r. By the above estimates we have that n(x,r) + 1 > n0 and hence
n(x,r) ≥ n0 and

∣∣π(Cn(x,r) (x)
)∣∣ ≥ r. Lemma 4.2.6 in [1] guarantees that there exists a

universal constant L≥ 1 such that for every x∈M′ and 0 < r < exp(−n0 (
R

I dµ+ ε)) there
exist points x1, . . . ,xk with k≤ L such that π(M′∩B(π(x) ,r))⊂

Sk
`=1 π

(
Cn(x`,r) (x`)

)
. For

m′ = m|M′ the restriction of m to the set M′ we now have

m′◦π
−1 (B(π(x) ,r)) ≤

k

∑
`=1

m
(
Cn(x`,r) (x`)

)
≤

k

∑
`=1

∣∣π(Cn(x`,r) (x`)
)∣∣ hµR

I dµ−ε

≤
k

∑
`=1

e
(
−n(x`,r)(

R
I dµ−ε)

(
hµR
I dµ−ε

))

=
k

∑
`=1

(
e(−(n(x`,r)+1)(

R
I dµ+ε))

) n(x`,r)(
R

I dµ−ε)
(n(x`,r)+1)(

R
I dµ+ε)

(
hµR
I dµ−ε

)

≤
k

∑
`=1

∣∣π(Cn(x`,r)+1 (x`)
)∣∣ n(x`,r)(

R
I dµ−ε)

(n(x`,r)+1)(
R

I dµ+ε)

(
hµR
I dµ−ε

)

≤
k

∑
`=1

r
n(x`,r)(

R
I dµ−ε)

(n(x`,r)+1)(
R

I dµ+ε)

(
hµR
I dµ−ε

)

≤ L · r
(
R

I dµ−ε)
(
R

I dµ+ε)

(
hµR
I dµ−2ε

)
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where the last inequality holds if we choose n0 > ε−1
(

hµR
I dµ −2ε

)
. By the mass distribu-

tion principle this shows that hµR
I dµ ≤ HD(π(M′)). Since M′ ⊂ M ⊂ G (µ)⊂ Fα it follows

that
hµR
I dµ

≤ HD(Fα) .

By (4.6) and Proposition 4.9 we therefore have

β̂(α) = lim
k→∞

β̂(αk) = lim
k→∞

hµkR
I dµk

≤
hµR
I dµ

≤ HD(Fα) .

This gives the lower bound for the Hausdorff dimension of Fα also for α ∈ ∂M. �
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