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Abstract. We prove several essential fractal properties, such as positivity, finiteness or
local infinity, of Hausdorff and packing measures of radial Julia sets of large subclasses
of entire and meromorphic functions considered in [MU]. Most of the results proven are
shown to be optimal.

1. Introduction

In the paper [MU] we have developed the geometric thermodynamic formalism for a large
class of transcendental entire and meromorphic functions. We have also brought up its frirst
geometrical consequences such as Bowen’s formula and real analyticity of the Hausdorff
dimension function of radial Julia sets. Given a meromorphic function f : C → Ĉ, geometric
thermodynamical formalism deals with potentials of the form −t log |f ′|, t > 0. In [MU]

we have thoroughly explored the class of hyperbolic meromorphic functions f : C → Ĉ
satisfying the following:

Rapid derivative growth: There are α2 > max{0,−α1} and κ > 0 such that

(1.1) |f ′(z)| ≥ κ−1(1 + |z|α1)(1 + |f(z)|α2)

for all finite z ∈ J(f) \ f−1(∞),

and frequently the stronger:

Balanced growth condition: There are α2 > max{0,−α1} and κ > 0 such that

(1.2) κ−1(1 + |z|α1)(1 + |f(z)|α2) ≤ |f ′(z)| ≤ κ(1 + |z|α1)(1 + |f(z)|α2)

for all finite z ∈ J(f) \ f−1(∞).

Throughout the entire paper we use the notation

α = α1 + α2.

Hyperbolicity means here that the map f : C → Ĉ is topologically hyperbolic, i.e. the
Julia set J(f) stays within a positive Euclidean distance apart from the forward trajectory
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of the sing(f−1) of singular points of f−1, and that this map is expanding, i.e. there are
c > 0 and λ > 1 such that

|(fn)′(z)| ≥ cλn for all z ∈ J(f) \ f−1(∞) .

Note (see Proposition 2.2 in [MU] that each topologically hyperbolic meromorphic function
satisfying the rapid derivative growth condition with α1 ≥ 0 is expanding, and consequently,
hyperbolic.

The conditions (1.1) and (1.2) are comfortable to work with and easy to to verify (see
[MU]) for a large natural class of functions which include the entire exponential family λez,
certain other periodic functions (sin(az+ b), λ tan(z), elliptic functions...), the cosine-root
family cos(

√
az + b) and the composition of these functions with arbitrary polynomials.

In contrast to the research devoted to the thermodynamic formalism of some classes of
entire and meromorphic functions (nearly all of them being periodic) done prior to [MU],
we assummed in [MU] no periodicity and we needed no projection onto infinite cylinders
or tori. Instead, we have worked with the conformal Riemannian metric σ defined by the
formula

dσ(z) = (1 + |z|α2)−1|dz|.
The norm of the derivative f ′(z) is in this metric given by the formula

|f ′(z)|σ = |f ′(z)|(1 + |z|α2)(1 + |f(z)|α2)−1.

The associated Perron-Frobenius-Ruelle (or transfer) operator

(1.3) Ltϕ(w) =
∑

z∈f−1(w)

|f ′(z)|−t
σ ϕ(z)

is well defined and has all the required properties that made the thermodynamical formalism
developed in [MU] work. Let (X,m) be a probability measure and T : X → X a measurable
map. Recall that given a bounded above non-negative measurable function g : X →
[0,+∞), the measure m is called g-conformal provided that

m(T (A)) =

∫
A

gdm

for every measurable subset A of X such that T |X is injective. With these tools in hand
we were then able to obtain dynamically and geometrically significant information about
the Julia set J(f) and about the radial (or conical or hyperbolic) Julia set

Jr(f) = {z ∈ J(f) : lim inf
n→∞

|fn(z)| <∞} .

Its Hausdorff dimension is frequently called the hyperbolic dimension of the Julia set J(f).
The key result of [MU] was the following.

Theorem 1.1. If f : C → Ĉ is an arbitrary hyperbolic meromorphic function of finite
order ρ that satisfies the rapid derivative growth condition (1.1), then for every t > ρ

α
the

following are true.

(1) The topological pressure P(t) = limn→∞
1
n

logLn
t (11)(w) exists and is independent of

w ∈ J(f) ∩ C.
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(2) There exists a unique λ|f ′|tσ-conformal measure mt and necessarily λ = eP(t). Also,
there exists a unique Gibbs state µt, i.e. µt is f -invariant and equivalent to mt.
Moreover, both measures are ergodic and supported on the radial (or conical) Julia
set.

(3) The density ψ = dµt/dmt is a continuous and bounded function on the Julia set
J(f).

Throughout the paper we will also require that the following condition is satisfied.

Divergence type: The series Σ(t, w) =
∑

z∈f−1(w) |z|−t diverges at the critical exponent

(which is the order of the function t = ρ; w is any non Picard exceptional value).

The result linking the dynamics and geometry of f , proven in [MU] was this.

Theorem 1.2. (Bowen’s formula) If f : C → Ĉ is a hyperbolic meromorphic function that
is of finite order ρ > 0, of divergence type and of balanced derivative growth with α1 ≥ 0,
then the pressure function P(t) has a unique zero h > ρ/α and

HD(Jr(f)) = h .

Starting of with this theorem, developing new ideas focused around the Riemannian metric
σ, and borrowing from [UZ2], we have shown in [MU] the real analytic dependenceof the
hyperbolic dimension in large classes of functions satisfying the assumptions of Theorem 1.2
(Bowen’s formula).

In this paper our goal is to obtain further finer geometric properties of such maps as in
Theorem 1.2. They will concern Hausdorff and packing measures and can be regarde as
related and as extensions of results from [KU1], [KU2], [KU3], [UZ1], [UZ2], and [UZ3],
comp. also the survey article [KU4].

2. Preliminaries

Let us mention that the Julia set of a hyperbolic function is never the whole sphere. We
thus may and we do assume that the origin 0 ∈ Ff is in the Fatou set (otherwise it suffices
to conjugate the map by a translation). This means that there exists T > 0 such that

(2.1) B(0, T ) ∩ J(f) = ∅.
The derivative growth condition (1.1) can then be reformulated in the following more con-
venient form:

There are α2 > 0, α1 > −α2 and κ > 0 such that

(2.2) |f ′(z)| ≥ κ−1|z|α1|f(z)|α2 for all finite z ∈ J(f) \ f−1(∞) .

Similarly, the balanced condition (1.2) becomes

(2.3) κ−1|z|α1|f(z)|α2 ≤ |f ′(z)| ≤ κ|z|α1|f(z)|α2 for all finite z ∈ J(f) \ f−1(∞)
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and the metric
dσ(z) = |z|−α2|dz|.

As a complement to Theorem 1.2 (Bowen’s formula), we have proved in [MU], Corollary 7.2,
the following result, crucial for our further theoretical considerations.

Corollary 2.1. If f : C → Ĉ is a hyperbolic divergence type meromorphic function of finite
order ρ > 0 and of balanced derivative growth (condition (2.3)), then f has a |f ′|hσ-conformal
measure mh. This measure will be in the sequel simply refered to as h-conformal.

The definitions of Hausdorff and packing measures as well as Hausdorff dimension can be
found for example in [Mat] or [PU]. The symbols Ht

σ and Pt
σ refer respectively to the

t-dimensional Hausdorff and packing measure evaluated with respect to the Riemannian
metric dσ. Fix t > ρ/α. By Theorem 1.1(2) there exists mt, an eP(t)|f ′|tσ-conformal
measure, and let me

t be its Euclidean version defined by the requirement that

dme
t(z) = |z|α2tdmt(z).

Note that this measure is eP(t)|f ′|t-conformal and a straightforward calculation shows that

(2.4)
dme

t ◦ f
dme

t

(z) = eP(t)|f ′(z)|t, z ∈ J(f).

Let δ(f) be the quarter of the Euclidean distance of the Julia set of f the the forward
trajectory of the set of singular points of f−1. Fix any radius

R ∈ (0, δ(f)).

So, if z ∈ J(f), n ≥ 0, and z ∈ f−n(w), then there exists a unique holomorphic inverse
branch f−n

z : B(w, 4R) → C of fn sending w to z.

We will also need the following distortion theorem which is a straightforward consequence
of hyperbolicity of the function f , Koebe’s Distortion Theorem, and the fact that 0 /∈ J(f).

Lemma 2.2. For every hyperbolic meromorphic function f : C → Ĉ satisfying the rapid
derivative growth condition there exists a constant Kσ ≥ 1, called σ-adjusted Koebe con-
stant, such that if R > 0 is sufficiently small, then for every integer n ≥ 0, every w ∈ J(f),
every z ∈ f−n(w) and all x, y ∈ Bσ(w,R|w|−α2) ∪B(w,R) , we have that

(2.5) K−1
σ ≤ |(f−n

z )′(y)|σ
|(f−n

z )′(x)|σ
≤ Kσ.

It follows from this lemma that
(2.6)
Bσ

(
z,K−1

σ R|w|−α2|(fn)′(z)|−1
σ

)
⊂ f−n

z

(
Bσ(w,R|w|−α2)

)
⊂ Bσ

(
z,KσR|w|−α2|(fn)′(z)|−1

σ

)
and that

(2.7) mt

(
f−n

z

(
Bσ(w,R|w|−α2)

))
� e−P(t)n|(fn)′(z)|−t

σ mt

(
Bσ(w,R|w|−α2)

)
.
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Finally, using Nevanlinna’s theory we have proved in [MU] the following

Proposition 2.3. Let f be a meromorphic function of finite order ρ and suppose that
0 /∈ J(f). Then, for every t > ρ, there is Mt > 0 such that∑

f(z)=a

1

|z|t
≤Mt for all a ∈ J(f) .

3. Hausdorff and Packing Measures.

We now analyze the behavior of the Hausdorff and Packing measures on the radial Julia
set of a function f which is again supposed to be hyperbolic, of divergence type and of
balanced growth (condition (2.3)). First note that it was proved in [MU] that

(3.1) Hh
σ(Jr(f)) < +∞.

The corresponding result for packing measures is this.

Proposition 3.1. The packing measure Ph
σ(Jr(f)) > 0.

Proof. By Theorem 1.1 there exists a Borel probability f -invariant ergodic measure
µh equivalent to mh. Fix M > T so large that µh(B(0,M)) > 0. It then follows from
Poincare’s Return Theorem that there exists a Borel set X ⊂ J(f) ∩ B(0,M) such that
µh(X) = µh(B(0,M)) > 0 and for every z ∈ X there exists an infinite incerasing sequence
{nj}∞j=1 such that fnj(z) ∈ B(0,M) for all j ≥ 1. In particular X ⊂ Jr(f). Using (2.6)
and (2.7) we therefore obtain for every j ≥ 1 that

mh

(
Bσ

(
z,K−1

σ R|(fnj(z)|−α2|(fnj)′(z)|−1
σ

))
≤ Kσ|(fnj)′(z)|−h

σ

Consequently,

lim inf
r→0

mh(Bσ(z, r))

rh
≤ lim inf

j→∞

m
(
Bσ

(
z,K−1

σ R|(fnj(z)|−α2|(fnj)′(z)|−1
σ

))(
K−1

σ R|(fnj(z)|−α2|(fnj)′(z)|−1
σ

)h

� |(fnj)′(z)|α2h ≤Mα2h.

Hence Ph
σ(Jr(f)) ≥ Ph

σ(X) > 0, and we are done. �

A meromorphic function f : C → Ĉ is said to be of finite injectivity radius if there exists
R∗ > 0 such that for every z ∈ J(f) the function f |B(z,R∗) is injective. A meromorphic

function f : C → Ĉ is said to be of bounded local multiplicity if there exists R∗ > 0 and
P > 0 such that for every z ∈ J(f) the function f |B(z,R∗) is at most P -to-1. Call P a
local multiplicity of f . Of course each meromorphic function of finite injectivity radius is
of bounded local multiplicity. We shall prove the following.

Theorem 3.2. If f is of bounded local multiplicity and if α1 > 0 , then the packing measure
Ph|Jr(f) is locally infinite at every point of Jr(f).
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Proof. Fix

R = min{R∗, T/2, dist(Pf , J(f))/2}.
Since the measure µh is ergodic and its topological support is equal to J(f), the set

Jr∞(f) = {z ∈ Jr(f) : lim sup
n→∞

|fn(z)| = +∞}

is of measure µh equal to 1 and is dense in Jr(f). It therefore suffices to prove the proposition
for all points from Jr∞(f). Let P < ∞ be a local multiplicity of f . Making use of the
Perron-Frobenius operator Lh we get for every ξ ∈ J(f) with |ξ| > 2R that

(3.2)

mh

(
Bσ(ξ, R|ξ|−α2)

)
≤ mh(B(ξ, 2R)) ≤ κh

∫
J(f)

∑
z∈f−1(w)∩B(ξ,2R)

|z|−αhdmh(w)

≤ κh(|ξ| − 2R)−αh

∫
J(f)

Pdmh(w) = Pκh(|ξ| − 2R)−αh.

Now fix z ∈ Jr∞(f) and let {nj}∞j=1 be an increasing to infinity sequence of positive integers
such that |fnj(z)| ≥ 4R for all j ≥ 1 and limj→∞ |fnj(z)| = +∞. Using (2.7) and (3.2) we
get for every j ≥ 1 that

mh

(
Bσ

(
z,K−1

σ R|fnj(z)|−α2|(fnj)′(z)|−1
σ

))
≤

≤ Kh
σ |(fnj)′(z)|−h

σ m
(
Bσ

(
fnj(z), R|fnj(z)|−α2

))
≤ P (2ακKσ)h|(fnj)′(z)|−h

σ |fnj(z)|−αh

� |(fnj)′(z)|−h
σ |fnj(z)|−αh.

Hence,

lim inf
r→0

m(Bσ(z, r))

rh
≤ lim inf

j→∞

m
(
Bσ

(
z,K−1

σ R|fnj(z)|−α2|(fnj)′(z)|−1
σ

))(
K−1

σ R|fnj(z)|−α2|(fnj)′(z)|−1
σ

)h

� lim inf
j→∞

|fnj(z)|−α1h = 0.

We are done. �

Notice that the assumption α1 > 0 is sharp. For elliptic functions α1 = 0, α2 > 1 and, as
was shown in [KU2], if they are hyperbolic (in fact it suffices for them to be non-recurrent
without parabolic points) then h = HD(Jr(f)) = HD(J(f)) and the h-dimensional packing
measure of the Julia set of f is finite. We can complete the picture by the following.

Theorem 3.3. Suppose that f : C → Ĉ is a hyperbolic meromorphic function of balanced
rapid derivative growth with α1 = 0 and α2 ≤ 1. If f is of finite injectivity radius, then the
packing measure Ph|Jr(f) is locally infinite at every point of Jr(f).

Proof. Fix

0 < R ≤ min{R∗/4, T/2, (4κKT 2α1−1)−1, dist(Pf , J(f))/2}.
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Since α1 = 0, α = α2. Let Jr∞(f) have the same meaning as in the provious proposition.
Similarly as there it suffices to prove our proposition for all points from Jr∞(f). Also,
similarly as there, we get for every ξ ∈ J(f) that

mh

(
Bσ(ξ, R|ξ|−α2)

)
≤ κh

∫
J(f)

∑
z∈f−1(w)∩B(ξ,2R)

|z|−αhdmh(w)

= κh

∫
f(B(ξ,2R))

∑
z∈f−1(w)∩B(ξ,2R)

|z|−αhdmh(w)

≤ κh(|ξ| − 2R)−αh

∫
f(B(ξ,2R))

#(f−1(w) ∩B(ξ, 2R))dmh(w)

≤ κh(|ξ| − 2R)−αhmh(f(B(ξ, 2R))).

Now, in view of the definition of R∗, Koebe’s Distortion Theorem and the balanced rapid
growth of the derivative, we get that

f(B(ξ, 2R)) ⊂ B(f(ξ), 2KR|f ′(ξ)|) ⊂ B
(
f(ξ), 2κKR|ξ|α1|f(ξ)|α2

)
⊂ B

(
f(ξ), 2κKTα1Tα1−1R|f(ξ)|

)
⊂ B(f(ξ), |f(ξ)|/2),

where the last inclusion was written since R ≤ (4κKT 2α1−1)−1. Hence

f(B(ξ, 2R)) ⊂ C \B(0, |f(ξ)|/2),

and therefore

(3.3) mh

(
Bσ(ξ, R|ξ|−α2)

)
≤ κh(|ξ| − 2R)−αhmh

(
C \B(0, |f(ξ)|/2)

)
.

Now, as in the proof of the previous proposition, fix z ∈ Jr∞(f) and let {nj}∞j=1 be an
increasing to infinity sequence of positive integers such that |fnj(z)| ≥ 4R for all j ≥ 1 and
limj→∞ |fnj(z)| = +∞. Using (2.7) and (3.3), and remembering that α = α2, we get for
every j ≥ 1 that

mh

(
Bσ

(
z,K−1

σ R|fnj(z)|−α|(fnj)′(z)|−1
σ

))
≤

≤ Kh
σ |(fnj)′(z)|−h

σ mh

(
Bσ

(
fnj(z), R|fnj(z)|−α

))
≤ (2ακKσ)h|(fnj)′(z)|−h

σ |fnj(z)|−αhmh

(
C \B(0, |fnj(z)|/2

)
= (2ακK2

σR
−1)h

(
K−1

σ R|fnj(z)|−α|(fnj)′(z)|−1
σ

)h
mh

(
C \B(0, |fnj(z)|/2

)
.

Since lims→∞mh(C \B(0, s)) = 0, we thus get

lim inf
r→0

mh(Bσ(z, r))

rh
≤ lim inf

j→∞

mh

(
Bσ

(
z,K−1

σ R|fnj(z)|−α|(fnj)′(z)|−1
σ

))(
K−1

σ R|fnj(z)|−α|(fnj)′(z)|−1
σ

)h

≤ lim inf
j→∞

(2ακK2
σR

−1)hmh

(
C \B(0, |fnj(z)|/2

)
= 0.

We are done. �

A meromorphic function is called evenly distributed if

(3.4) ∀ε > 0∃Cε ≥ 1∀ξ ∈ J(f)∀w ∈ J(f)∀R ≥ 1 #(f−1(w) ∩B(ξ, R)) ≤ CεR
ρ+ε.
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Our last result is about positivity of the Hausdorff measure of Jr(f). Notice that Hh
σ(J(f)) =

0 for any hyperbolic elliptic function where again h = HD(Jr(f)) = HD(J(f)) (see [KU2]).
In this case h < ρ = 2.

Theorem 3.4. Suppose that a hyperbolic meromorphic function f : C → Ĉ satisfies the
following conditions.

(a) f is of balanced rapid derivative growth with α1 ≥ 0.
(b) ρ < h (which is implied by (a) if α ≤ 1).
(c) The map f is of finite injectivity radius.
(d) The map f is evenly distributed.

Then 0 < Hh
σ(Jr(f)) < +∞.

Proof. Let

θ = min{R∗, dist(Pf , J(f))}.

First notice that (3.4) is satisfied for all R ≥ θ/8. Let ν be the Euclidean version of the
h-conformal measure mh. In view of (b) there exists ε > 0 so small that ρ+ε ≤ h. Similarly
as (3.2), we get for every ξ ∈ J(f) and every R ∈ [θ/8, |ξ|/2) that

(3.5)

ν(B(ξ, R)) ≤ 2αh|ξ|αhmh(B(ξ, R)) ≤ 2αhκh|ξ|αh

∫
J(f)

∑
z∈f−1(w)∩B(ξ,R)

|z|−αhdmh(w)

≤ (2ακ)h|ξ|αh2αh|ξ|−αh

∫
J(f)

#(f−1(w) ∩B(ξ, R))dmh(w)

≤ (4ακ)hCεR
ρ+ε ≤ C(1)Rh

with an absolute constant C(1) ≥ 1. For all 0 < r1 < r2 denote by A(r1, r2) the closed
annulus centered at 0 with inner radius r1 and outer radius r2 and by

Aj = A(3R2−(j+1), 3R2−j).

Keep ε and ξ as above. Fix R ≥ |ξ|/2. Then B(ξ, R) ⊂ B(0, 3R) and, using Proposition 2.3,
we therefore get that

(3.6)

ν(B(ξ, R)) ≤ ν(B(0, 3R)) ≤
log2(R/T )∑

j=0

ν
(
Aj

)
≤

log2(R/T )∑
j=0

(3R2−j)αhmh

(
Aj

)
≤

log2(R/T )∑
j=0

(3R2−j)αh

∫
J(f)

∑
z∈f−1(w)∩Aj

|z|−αhdmh(w)

=

log2(R/T )∑
j=0

(3R2−j)αh

∫
J(f)

∑
z∈f−1(w)∩Aj

|z|−(ρ+ε)|z|ρ+ε−αhdmh(w)



9

≤ (3R)αh

log2(R/T )∑
j=0

(3R)ρ+ε−αh2−αhj2−(j+1)(ρ+ε−αh)

∫
J(f)

∑
z∈f−1(w)∩Aj

|z|−(ρ+ε)dm(w)

≤M(ρ+ε)2
αh−ρ−ε(3R)ρ+ε

log2(R/T )∑
j=0

2−(ρ+ε)j ≤ C(2)Rρ+ε ≤ C(3)Rh

with some absolute constants C(2), C(3) ≥ 1. Fix now z ∈ Jr(f) and r ∈ (0, θ/32). Let
n ≥ 0 be the largest non-negative integer such that

(3.7) r|(fn)′(z)| ≤ θ/32.

Such an integer exists since f : J(f) → J(f) is an expanding map. Then

(3.8) r|(fn+1)′(z)| > θ/32.

It follows from the definition of θ that the holomorphic inverse branch f−n
z : B(fn(z), θ) →

C of fn sending fn(z) to z is well-defined. Since the restriction f |B(fn(z),θ) is injective and

since, by Koebe’s 1
4
-Distortion Theorem, f(B(fn(z), θ)) ⊂ B

(
fn+1(z), 1

4
θ|f ′(fn(z))|

)
, we

conclude that the holomorphic inverse branch f
−(n+1)
z : B

(
fn+1(z), 1

4
θ|f ′(fn(z))|

)
→ C of

fn+1 sending fn+1(z) to z is well-defined. Since, by (3.7),

4r|(fn+1)′(z)| = 4r|(fn)′(z)| · |f ′(fn(z))| ≤ θ

8
|f ′(fn(z))|,

applying Koebe’s 1
4
-Distortion Theorem again, we get that

f−(n+1)
z

(
B

(
fn+1(z), 4r|(fn+1)′(z)|

))
⊂ B(z, r).

Noting (3.8) and applying (3.5), (3.6) along with Koebe’s Distortion Theorem, we thus get
that

ν(B(z, r)) ≤ Kh|(fn+1)′(z)|−hν
(
B

(
fn+1(z), 4r|(fn+1)′(z)|

))
≤ Kh|(fn+1)′(z)|−h max{C(1), C(3)(4r|(fn+1)′(z)|)h = Kh max{C(1), C(3)}rh.

Thus, Hh
e (Jr(f)) > 0 and consequently, Hh

σ(Jr(f)) > 0. Since the inequality Hh
σ(Jr(f)) <∞

was established in Proposition 3.1, we are done. �
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