GEOMETRY AND ERGODIC THEORY
OF NON-HYPERBOLIC EXPONENTIAL MAPS

MARIUSZ URBANSKI AND ANNA ZDUNIK

ABSTRACT. We deal with all the maps from the exponential family {Ae®} such that the orbit
of zero escapes to infinity sufficiently fast. In particular all the parameters A € (1/e,+00)
are included. We introduce as our main technical devices the projection F of the map fy
to the infinite cylinder @ = €/2wxiZ and an appropriate conformal measure m. We prove
that J,.(F)\), essentially the set of points in () returning infinitely often to a compact region
of @ disjoint from the orbit of 0 € @, has the Hausdorff dimension hy € (1,2), that the hy-
dimensional Hausdorff measure of J,.(F)) is positive and finite, and that the hy-dimensional
packing measure is locally infinite at each point of J,.(Fy). We also prove the existence and
uniqueness of a Borel probability Fy-invariant ergodic measure equivalent to the conformal
measure m. As a byproduct of the main course of our considerations, we reprove the result
obtained independently by Lyubich and Rees that the w-limit set (under f)) of Lebesgue
almost every point in @, coincides with the orbit of zero under the map fy. Finally we show
that the the function A — hy, A € (1/e, +00), is continuous.

1. Introduction

Let fy = Aexp(z), A € C, A # 0 be a family of exponential maps. In this paper we deal
with a set of parameters A\ for which the trajectory of the singular value 0 tends to infinity
exponentially fast. More precisely, let

Bn = fj\z(o)a Oy = Reﬁm

We say that the parameter A is super-growing if a,, — 400 and there exists a constant ¢ > 0
such that for all n large enough
c

R

Qi1 > c™

|Bn-t1] (1.1)

Notice that this implies

c
|Bnt1] = [ Al exp (mlﬁno (1.2)
It is known that for these parameters J(fy) = C, moreover it follows from [We] that the
Hausdorff dimension of the set of super-growing parameters equals 2.
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In the papers [UZ1] and [UZ2] we have dealt with geometry and dynamics of the set .J,. of
points non-escaping to infinity under the iteration of a hyperbolic exponential map. In this
paper we go beyond hyperbolicity, allowing in particular the singular value 0 to belong to the
Julia set. We consider the projection F) of the map fy to the infinite cylinder @Q = €/2miZ,
and we define J,(F)), essentially the set of points in ) returning infinitely often to a compact
region of () disjoint from the orbit of 0 € (). This set turns out to carry on a reach geometric
structure and intriguing dynamics. Its Hausdorff dimension h, lies strictly between 1 and
2, its hy-dimensional Hausdorff measure is positive and finite and its hy-dimensional packing
measure is locally infinite at each point of .J.(f\). The former fact, interesting itself, provides
also a transparent geometric interpretation of the hy-conformal measure, the object defined
by purely dynamical means. The latter fact is more interesting than it could seem at the
first look. The reason is that it forms the main ingredients in the proofs of the following
two results. That HD(J,(fy)) < 2 and that, consequently, the w-limit set (under fy) of
Lebesgue almost every point in €, coincides with the orbit of zero under the map f\. So,
as a byproduct of the main course of our considerations, we have reproved the celebrated
result of M. Lyubich and M. Rees (see [Lyu], [Re]). In the last section we show that the
function A — hy, A € (1/e,+00), is continuous. We also study the metric dynamics of the
map F), and starting of with M. Martens’ approach (see [Mal]) and using a very useful old
result of Hayman (see [Ha]) we prove the existence and uniqueness of a Borel probability
F)-invariant ergodic measure equivalent to the conformal measure m, or equivalently to the
Hausdorff measure H"|; (s,). The just mentioned conformal measure m forms the basic tool
to exhibit both geometrical and dynamical features of the set J.(f\). Already proving its
existence (via tightness) requires new ideas and careful estimates. Other results described in
this introduction also require very technical considerations and fresh methods.

In what follows, we shall frequently use the Koebe distortion theorem: given r < 1 there
exists a constant K, such that for every univalent function f defined in B(0, 1) and for every

z,y € B(0,r) we have J;:Ezg < K;. We shall denote by K the Koebe constant K.

We shall use the notation a < b to compare the variables a and b; a < b if there is a constant
C' such that a < Cb.

2. PRELIMINARIES

From now on throughout the entire paper we fix a super-growing parameter A € €'\ {0}, and
we denote the map f) : € — by f. We define the equivalence relation ~ on €'x € by saying
that z ~ w if and only if there exists k € Z such that z — w = 2mik. We denote the quotient
space €/ ~ by @, which is an infinite cylinder, and by 7 : € — @ we denote the corresponding
quotient map, i.e. 7(z) is the equivalence class of z with respect to the equivalence relation
~. Since the maps f : @ — C'and wo f : @' — ( are constant on equivalence classes of the
relation ~, they canonically induce respective conformal maps

f:Q—=C and F:Q — Q.
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Definition 2.1. For every n > 0 we put

Bn = fn(o)a Op = Reﬁna 6;;0 - {Bk k > n}a Bn = ’/T(Bn)a and B;;o - {Bk ik > n}

Fix M > 0 and consider two sets
Qv =1{2€Q:|Rez| < M}

and
Ju={2€Q:F"(z) e Quforalln>0} =] F "(Qu).
n>0
Obviously the set Jy; is compact and forward invariant under F'. Since A is super-growing,
fn — 00. Thus 0 ¢ Jy; and

1 N

Since dp; > 0, for every z € Jy and every n > 1, all the holomorphic inverse branches of F'~"
are well-defined on the ball B(z,2d,,). We shall prove the following.

Lemma 2.2. For every M > 0 there exists ny > 1 such that |(F*)'(z)| > 2 for all z € Jy
and all k > nyy.

Proof. Suppose on the contrary that there exist a sequence {z;}32, C Jy and {n;}2,, an
unbounded increasing sequence of positive integers such that

|(F™) ()] < 2. (2.1)

Consider inverse branches F; " : B(F™(z;),2dy) — @ of F™ sending F™(x;) to x;. Let
y € @ be an accumulation point of the sequence {F™(z;)}5°,. Passing to a subsequence, we
may assume that |y — F™ (z;)| < 057/2 for all ¢ > 1. Then all the inverse branches F; " are
well-defined on B(y,3d5,/2), and applying Koebe’s distortion theorem, it follows from (2.1)
that [(F; ™) (y)| > & for some £ > 0 and all ¢ > 1. Applying now ;-Koebe distortion theorem
we see that there exists a non-empty open set B C @ such that F, " (B(y, 30x/2)) D B for all
i > 1. Hence F"(B) C B(y,30x/2), which means that f™ (B) C U2 . (B(y, 30 /2) + 2kmi)
(recall that F™ = o f" owr~'). In particular the family { " : B — @} is normal. This is a
contradiction with the fact that J(f) = € and we are done. B

3. THE EXISTENCE OF A CONFORMAL MEASURE

Given t > 0 a Borel probability measure m on @ is said to be t-conformal (or: conformal with
exponent t) if and only if

m(F(A)) = /A |F'tdm (3.1)

for every Borel set A C @ such that F|4 is 1-to-1. Our main goal in this section is to prove the
existence of a conformal measure. Obviously, one conformal (but infinite) measure already
exists; this is simply the Lebesgue measure. We shall construct another measure, which will
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be finite and conformal with an exponent smaller than 2. First, following [DU1], for every
M > 0 we shall build a probability Borel measure my;, with support contained in .J);, which
will be ”almost conformal” for some ¢,; > 0, i.e.

mar(F(A)) > /A |F' [ dmay (3.2)

for every Borel set A C @ such that F'|4 is 1-to-1 and (3.1) holds if we assume in addition
that AN{z € Q : |Rez| > M} = . In the sequel, we shall need to refer to some details
of the construction, so we make it more specific now. So, let d,; be defined as above. For
every M > 0 we choose a collection of points EM = {x1,...,x,,} C Jyr such that the balls
B(x;, 0pr) cover the set Jy,. Consider the function

ey (t) = limsup%log S > FY ] H(w)

n—00
z€EEM yeF " ¢
[Inr

(Notice that the summation is take over only those preimages of x which are in Jy;.) The
function ¢ — cp/(t) has three important properties. First, notice that it follows from Holder
inequality that it is convex in IR, so it is continuous. Next, it follows easily from Lemma 2.2
that it is strictly decreasing. Finally, it follows from [UZ1], Theorem 2.1 that one construct
an expanding Cantor repeller whose limit set X is invariant under F2, contained in J,; for
M large, and ¢y (0) > %htop(-Fﬁ() > 0. Thus,we conclude that there exists a unique value
t = tp such that cp/(ty) = 0. Following the general construction in [DU1] (see also [PU],
Chapter 10), and using the sets F, = F‘;Z(EM) we construct the measure my;, for which
mas(Jar) = 1 and which is ”almost conformal” with exponent 5.

We start with the following.

Lemma 3.1. [t holds HD(Jys) > ty.

Proof. Fix a point x € Jy and an integer n > 1. Let F,™ : B(F"(x),20pm) — @ be
the holomorphic inverse branch of F™ sending F™(x) to z. Applying now ;-Koebe distortion
theorem and the standard Koebe distortion theorem, it follows from (3.2) that

g (B, SIEY @1 63) ) < g (B (BOF ), 600)

< KM(F™) ()] mar (B(F™(x), 0u)) (3.3)
1 tar
< (RS (ol (FY @)
Since, by Lemma 2.2, lim,,_,o |(F")(x)| = oo uniformly in .J;, we conclude that for every

r > 0 small enough there exists n > 1 such that

35M|(Fn+1)’($)|1 <r< 25M|(Fn)'(a:)|1_
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Using (3.3), we therefore get
mar(B(z,7) < mas(Bla, 0l (F) ()| )
< (AR (AT Sa [(F™) () |7 [ FY (B (@) | < [(4K T8 vt

where T = sup{|F'(y)| : y € Jp} is finite since Jy; is bounded. This inequality implies in a
standard way that HD(Jys) >ty (see e.g [PU]). B

Lemma 3.2. For every M large enough there exists py > 0 such that for all p > pg HD(Jy;) <
trrspe

Proof. It easily follows from Lemma 2.2 and the absence of critical points of F'in () that

= inf{[(F")'(w)| : w € Jy,n 21} >0 and  lim |(F")'(z)| = o0

for all z € Jyy. Let us fix p > 0 so that KL™' < p and let us consider the set Jy,,. Following
the construction described above, we choose a finite collection of points EM*? C Jy,, such
that the balls B(z,dy4,),x € EMTP cover the set Jyry,. Let y € Jy C Jyrip Given
n > 0 there exists x € EM* such that F"(y) € B(x,0nyp). By our definition of darp, all
holomorphic branches F'~* are defined in B(x,2054,). Let F,” be the branch sending the
point F™(y) to F" *(y). Then, by Koebe distortion theorem, for all z € B(x, dpr4,) we get
(£, ) ()]
|(F5)' (E™(y))]
So, |(F,'(2))| < K|(F~)(F"(y))| < KL " since F""9(y) € Jy. Thus, by integrating, we
conclude that d(F,"(z), F"'(y)) < KL~' < p and, finally, F,"(z) € Qu4, for all 0 <i <n
(since F™ l( ) € Qu). This implies that the point w = F,™(z) belongs to the set Jyp,
iLe. we F;» ({z}). Let F,(x) be the collection of branches F" on B(x,0)+p), satisfying
F " (z) € J M+p It follows from the above considerations that
JuC U U E(B@,0ms).

x€EEM+P vEF, ()

< K.

Moreover, diam(F, " (B(z,0p1,)) — 0 uniformly as n — oo since Fj;,, . is expanding and

1
> Y (damEBEs) < Y Y T (3.4)

Z'EEM+p Vej:n( ) CEEEM+p weFl_M
+p

Fix now an arbitrary ¢ > t3;1,. Then ¢pr4,(¢) < 0, so there exists € > 0 such that

1
Z Z . )W < exp(—ne)

zeEM+P yyep—n
[Iv4+p

for all n large enough. Using (3.4) we conclude that H,(Jy) = 0 for all ¢ > ¢p4, and,
consequently, HD(Jys) < tpr4p- W



6 MARIUSZ URBANSKI AND ANNA ZDUNIK

Corollary 3.3. There exists s > 1 such that tyy > s for all M large enough.

Proof. Tt follows from Theorem 2.1 in [UZ1] that HD(Jy) > 1 for all M large enough. Fix
one such M. Choose p as in the preceding lemma. Then ¢y, > HD(Jy) = s > 1 for all
g > p and we are done. B

Given M > 0 we set

The main technical result of this section is the following.

Lemma 3.4. The sequence of measures {my}5° is tight on Q.

Proof. We are to check that for every & > 0 there exists M > 0 such that for all n
m,(Yar) < . We first estimate from above m,,(Y;;) in essentially the same way as in [UZ1].
For the needs of the proof of Theorem 3.8 we shall establish a slightly more general result.
Fix a Borel set G C @. This set is mapped one to one by f onto some set in €. But F' is no
longer one-to-one in GG since two points in the image are identified if they differ by 2kme for
some k € Z. We have

mn(GNY5) =my({z € GNY, 1 F(2) € Yogun}) +ma ({2 € GNYY : F(2) € Qexpary })-

To estimate the first summand, let us write {Rez > exp(&)} N f(G) = U S, where S} =
{Rez > exp(&)} N f(G) N {2kw < Imz < 2(k + 1)7}. Then the map F' is one-to-one on
each set G N f~1(Sg) and the derivative |F’| on this set can be estimated from below by
infyes, [w| > |exp(&F) + 2kmi| if k is nonnegative and by |exp(4-) + 2|(k + 1)|mi| if k is
negative. Thus,

+o0

My (F_l()/exp(M/2) N F(G))) < my (Y:%Xp(M/Z) N F(G)) ©2 Z | eXp(M/2) + 2k7”:|_tn
k=0
k=400
<mu(F(G))-2 > |exp(M/2) + 2kmi| ™
k=0

+0o0 (35)
<ma(F(Q)) [ e < (exp(M/2))' T ma(F(G))

= (exp(M/2))" *ma(F(G)),

where s > 1 is the number produced in Corollary 3.3. In order to estimate the second
summand put

A= {Z € Y]\Z NG : F(Z) € Qexp(M/Q)}.
Let
Za=AkeZ: f(AAN{ze:2kr <Imz < 2(k+1)r} #0}.



GEOMETRY AND ERGODIC THEORY OF NON-HYPERBOLIC EXPONENTIAL MAPS 7
Now, if z € A then Rez > M and therefore |f(2)| = |A|e®®* > |\|eM. Hence, if k € Z,, then
(APe* < [f(2)” < (exp(M/2))* + dn® max{[k + 1%, [k — 1]°}

and therefore

2 1 9 oM My _ L omgy2 M 2M
(max{l+1], [k = 11})" 2 75 (AP =€) = 5PN —e ™) =
assuming that M is large enough. Thus max{|k + 1|,|k — 1|} = €, and in consequence
|k| = eM. Hence
mu(A) <mu(F(A) Y |k =M m, (F(A)) < MT9m, (F(G)).

k|=eM

Combining this and (3.5), we get
mn(ViE N G) < exp (%M(l - s)> mn(F(G)) < exp (%M(l - s)) | (3.6)
In particular,
mn (V) < exp (%M(l _ s)> . (3.7)

We shall now estimate m,(Y,;). This will be more complicated, since the set Y}, is mapped
by f onto the ball B(0, |\|exp(—M)) and |F'(2)| = |F(z)|. This means that even if we bound

the measure m,, of B(O, |A| exp(—M)) by the radius exp(—M) erased to power t,, this will

not by enough to conclude that m,(Y,,) is small. But, actually, due to our super-growing
condition, the measure m,, of the ball B(0, |\ exp(—M)) is much smaller that exp(—¢,M)
and we shall estimate it carefully. Keep the same set G. It follows from (1.2) that for every
k>0

Cc
[Bral = [Ae | = [\ > |A] exp (WWO ' (3:8)

Consider now the balls B, = B(fk, |Br—1| !). The for all k& > 1 large enough 2B, is a
topological disc and it follows from Koebe’s distortion theorem followed by (1.1) that for all
k > 1 large enough

f(BeNG) C B(Brs1, K|Besl|Be1]"") N f(G)
C{z € @:Rez > apy1 — K|Best||Be 1| '} N f(Q)
C{z € @:Rez > ap1(1 — K\\e HBra| '} N F(G)
C{z € :Rez > ap1/2} N f(G).

The map Fjp,n¢ is no longer one -to-one but, since the hight of the image f(B) is bounded
from above by K |Bj11||Bk—1]"" every point in F|p, ¢ has at most iK|Bk+1||Bk,1|_1 preimages
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in By NG. Using (3.6), we therefore get
. —tn —
mn(BeNG) < (Yoo VF(G)) (inf{|£]1,}) " K|BesillBeoa| ™!
o . —tn _
< exp (L= 5)) (f{1 115, 3) " Bl G| a (FH(G))

Since f(Bg) C B(Bri1, K|BriallBre—1]™"), using (3.8) and Koebe’s distortion theorem, we
conclude that for all & large enough inf{|f’|,; } = |Bk41]|. Therefore, using the “equality”
part of (3.8), we obtain the following

m,(By NG) < exp (azﬂ (1-— S)) Bt ]~ Bt || Be—1 |~ ma (F*(G))

= Begr | %] B | <|B|I;\+|2|> 4 Mn(FX(G)) = | By "mn (F(G))  (3.9)

for k = (s — 1) /4. We now consider the holomorphic inverse branch Fy* : 2B, — @ sending
B, = F*(0) to 0. It follows from Koebe’s distortion theorem that

KBl - 1Bal - 18T < NETH ()] < K(1B1] - |Ba] - - 1B (3.10)
for all z € By, and
By = Fy *(By) € B(0,K(181] - [Ba] - - |Bel) H[Bea] ). (3.11)
Applying in turn Koebe’s i—distortion theorem, we get
By > B(0,47 (18] - 1Ba] - - 1Be]) HBea| ). (3.12)
Using (3.10) and (3.9), we obtain
o (F5 By N G)) < K™ (|Ba] 18] - |Bel) ™" ma(Be N G)

= (181l |Bal - 1Be]) "mn(Be N G) < |Biro| "ma(F*(G)). (3.13)

Notice that, in particular, in this way we get the estimate of the measure of By, by | Braa| 7"
Looking now at (3.11) and (3.12) with £ replaced by £+ 1 we conclude for all £ large enough

ClBk_H - Bk
Let W}, be the unbounded connected component of F~'(By) and let

Vi = Wi \ Wi,
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In view of (3.12) with k replaced by &k + 1, in view of (3.13), and in view of Lemma 3.1, we
can estimate as follows.

Vi) < (1)) ma (B B

< (MBI - 18a] - 1Bell B DIl ) " (Bic) (314)
< (4B - 1Bl 1Bl Bea D1Bel) [ Brgal
= [Brga|™”

for an arbitrary v € (0, k) and all k£ > 1 sufficiently large (depending on «y). The latter follows
from the following simple

Lemma 3.5. If the sequence (a;)$2, satisfies a; — 00 and ay,41 > cexp ay, for some positive
c then for every € > 0 there exists ng such that for every n > ng, ag + -+ o < €0

For every M > 0 let [(M) > 1 be the largest integer such that

YuC U Vi
k=1(M)
Since limyy 1 o (M) = +00, it follows from (3.14) that for all n > 1 and all M > 0 sufficiently
large

m(Yar) < D |Briel” — 0 as M — 4o0.
=I(M)
The proof of tightness is finished. m

Since, in view of Lemma 3.1, ¢, € [0,2], we can choose a subsequence {nj}?2, such that
{tn, }32, converges. Denote its limit by h. It follows from Lemma 3.4 and Prokhorov’s
theorem that passing yet to another subsequence, we may assume that the sequence {m,, }3°,
converges weakly, say to a measure m on (). Since there is a problem with conformality of
measures m,, only on sets {z € @ : |Rez| = ny} (cf. the paragraph preceding Lemma 3.1),
since ny " +oo when k 7 +o00, and since F : () — () is an open map, which has no critical
points, proceeding, with obvious modifications, as in [DU1] (comp. [UZ1]), we obtain the
following first basic result.

Theorem 3.6. The weak-limit measure m is h-conformal for the map F : QQ — Q.

Let us now introduce the main set J, = J,.(F) we will be dealing with throughout the rest of
this paper.
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Definition 3.7. J,.(f) C C is the set of those points z € C for which there exists an unbounded
sequence {ny(2)}3, such that

dist({£"(2)}321, 8°) > 0
and the set Re{f™*)(2)}¢2, is bounded. The set J, = J,(F) C Q is defined to be 7(J.(f)).

Given M > 0 we define the set J, ys to consist of those points z € ) for which there exists
an unbounded sequence {ny(z)}%2, such that

dist ({£"*)(2)}321, 5°) > 0

and {F™() ()}, C Q. Obviously, J, = UJ,.n. We shall now prove our second basic
result.

Theorem 3.8. If m is a t-conformal probability measure for F' : Q — @ with t > 1, then
m(J,) = 1. Even more, there exists M > 0 such that m(.J, ) = 1.

Proof. Fix M > 0 and define
By = {x € Yiy : Viso(F¥(x) € V3i = F*(z) € Vi) }.

We shall show first that there exists M > 0 arbitrarily large such that m(FE,;) = 0. Notice
that F(Y,f N Ey) C Ey and therefore Yy, N Ey € F7Y(E)s). Thus the same argument as in
formula (3.5) gives us the following.

+0o0
m(Exy NY3) <m(F~(Ew)) < Y |M + 2kni|'m(Yar N Eny)
k=00 (3.15)

1
< M"'m(Yy N Ey) < Zm(EM)
for all M > 0 large enough. It remains to show that there exists an arbitrarily large M such
that .
This task requires a much more involved reasoning. Again, as in the proof of tightness, the
difficulty is caused by the fact that the set £, MY, is mapped by F' into a neighbourhood of 0

with small derivative. Thus, we shall need to estimate carefully the measure m(F(Ey NYy,)).
For every n > 2 put

n n—1
M, =log4+ > log|B;| +log|Ba_1] =log4d + (n + 1) log |A| + Y a;j + ap_».
j=1 J=0

Similarly as (3.9) we can show that
m(Bn N G) 2 |Busa| "m(F(G)) (3.16)
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for Kk = %, for all Borel sets G C @ and all n (independent of G) large enough. We shall
now check that for all n > 2 large enough

F(Yy,) € By and F"(Vy, ) C Yo (3.17)
Indeed,

A L 12
F(Yy ) c B(0,e ™) =B10,- B!
(Vi) € B(O,e ) ( g LI
and applying (3.12) we see that the first inclusion in the formula (3.17) is satisfied. Also

Fn(Bn) =B, C Yan_‘ﬁnfl‘71 C YJ\—l/}n

for all n > 2 large enough (again, this follows easily from Lemma 3.5). Combining this and
the first inclusion in (3.17) we see that the second inclusion in (3.17) is also satisfied. Fix now
k > 2 so large that (3.16) and (3.17) hold for all n > k. It follows from the second inclusion
in (3.17) and from the definition of E);, that

F'" By, N Yy) C By, N Y]\J/}n. (3.18)
For every n > k put
Zy =Yy \ Yy

n+1"
It then follows from the first inclusion in (3.17) and from (3.18) that

m(Ew, N Zy) < (if{|F'(2)|" : 2 € Bag, 0 Zo}) " 'm(F (Eas, 0 Z2))
< (inf{|F'(2)|" : 2 € Ea, N Zn})*lm(F(E]\/[,c N Y]\}n)

< eXp(Mn-Ht)m(Bn N F_n(EMk))
= (47111 1851 - |ﬁn|> cm(By N F 7 (E))

Notice that the estimate (3.13) (which was established for measures m,,) is also valid for an
arbitrary t-conformale measure ¢ (with k = %) Applying (3.13) with m,, replaced by m, k
replaced by n, and with G = B,, N Ey,, we get

m(B, Ny ™(E,)) = m(Fy ™ (Bu N Er,)) < |Busal ™"m(F?(By N Eny,)),
and consequently
n+1 t
m (B, N Zn) < (4 ﬁ 1551 - |5n|) [Butal *m(F*(B, N Eng,))
=1 (3.19)
< |5n+2|7um(F2 (Bn N EMk))
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K

for u = 5 and for all n large enough. The latter easily follows again from Lemma 3.5. We

shall check now that F?(B, N Eyy) C Eyy,. Indeed, by Koebe’s distortion theorem and (1.1)
we get

F(By) C B(Bu1, KIM|Baga| - [Bu ™) € Yaui1=KNBasilBar|t C Y+n
Therefore F (Bn Nk Mk) C Ep, N YJ\J/}m and consequently
F?(B,N Ey,) C F(Ey, NY;),) C Y.
Thus, it follows from the definition of E,,, that F? (Bn N EMk) C Eu,. Using the estimate
(3.19) we conclude that
m(EMk N Zn) S |Bn+2|7um(ﬂEMk)

for all £ > 2 large enough and all n > k. Summing these inequalities up over all n > k and
using the fact that U,y Z, = Yy, we obtain

Tn(EM;c N Y]\}k) < iﬂ |Bn+2|7um(EMk) < im(EMk)

for all & > 2 large enough. Combining this and (3.15), where M = M}, (k large enough), we
get m(EMk) < %m(EMk), which implies that m(EMk) = 0. Thus, by conformality of the

measure m
m (U F‘j(EMk)) = 0.

J=0
In order to complete the proof, it therefore suffices to prove

Lemma 3.9.
o0

Q\ U F(Em) C Jon,

=0
Proof. Fix a point z € Q \ U3, F~7 (EMk) Then either

Case 1: There exists jo = jo(2) > 0 such that |Re(F’(2))| < Mj, for all j > jg

or

Case 2: There are infinitely many j's such that Re(F7(z)) > My and |[Re(F7(2))] < M.

Consider first the Case 1, |Ref?(z)| < My, for j > jo.
Since the sequence {3, }22 | diverges to co, we therefore conclude that dist({ f™(2)}5%,, {Bn}22,) >
0. Thus 2z € J, a1, and we are done in this case.

Consider now the Case 2.
Fix j > 1 such that Ref’(z) = Re(F’(z)) > M} and [Ref’(2)| = |[Re(F'*(2))] < M. Tt
follows from the definition of M that ag, aq, ... ,ar_1 < My — 1, and therefore

7 ({Bo Br - Brr}) N B(f(2),1) = 0. (3.20)
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Since [, € Y]\}“Hl for all k£ > 2 large enough and all n > k + 1, we get also
F2) ¢ B({Ba}rspens 1) (3.21)
By Koebe’s i—distortion theorem,
F(B(f(2),1) > B(f71(2), 47" \Je™).

On the other hand, it follows from (3.20) that B(f’(z),1) N f~"Bi,...,B.} = 0. Thus,
It (2) ¢ B({Bn kL 4*1|)\|6M’“). Combining this and (3.21) we see that

FH(2) ¢ B({Bu}ee,, min{1, 47" \|e"}). (3.22)
Obviously, we can write also
P11 (2) ¢ B({Bu}o2g, min{1, 471X }) (3.23)

since |f71(2) — Bo| = |f7T1(2)] > |A|eM*. Since we are in the Case 2, F/*!(2) € Qy,. Thus
z € Jp p, and we are done. W

Fix now M > 0. For every z € J, »y we fix one sequence {ny(z)}32, for which the condition in
the definition of the set J, ps ( Def. 3.7) is satisfied. Since f restricted to the ball centered at

) (2) with radius min{r, dist ({f”k(z)(z)}zozl, 580)} is univalent and since |f'(f™)(2))| =
|F(f@)(2))] = |\ exp(Re(f™)(2)) > |Ae ™, it follows from Koebe’s distortion theorem
that there exists a unique holomorphic branch f,*(*) : B(fsk(z)(z),éléz) of f~*(*) sending
) to 2z, where s;(2) = ng(2) + 1 and

5, = 6.(M) = 1—16|A|6—M min{r, dist ({7 (=)}, ) . (3.24)

Remark 3.10. Note that from (3.23) one can deduce that the radius 6,(My) in the above
construction can be chosen to be independent of a point z € Q \ U3, F~I(Eyy,,). We shall use
this property in the proof of Theorem 5.2.

Let z € J,. 5. Then F™()(2) € Q) for all k > 1. Hence
[F4D(2) = [F(F™D)(2)] = | A exp(Re(F"(2)) < [Ale™.
Therefore, assuming M to be large enough, we have that

B(fs+()(2),46.) C B(0,|\|e*™).

Definition 3.11. Let z € J, = Uy Jp.m. Passing to a subsequence, we may assume that the
limit limy,_, o, f*+()(2) ezists and belongs to B(0, |\eM) if 2 € J,n. This limit will be denoted
by y(2).

We shall prove now the following.
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Lemma 3.12. For every M > 0 and every z € J, pr
. ng(2)\! — 1 sk (2)\! —
Jim [(f*™) (2)] = Jlim |(F*)(2)] = +oc.

Proof. The idea of this proof is the same as of the proof of Lemma 2.2. Put s; = s4(2),
k > 1. Suppose on the contrary that liminfy_, |(f*¥)'(2)| < +o00. Without loss of generality
we may assume that 7 = limy_,, |(f**)'(2)| < 400 and that f*(2) € B(y(2),0,) for all k > 1.
Consider the family { f7*¢ : B(y(z), 36,) — C}j>1 of holomorphic inverse branches of f* send-
ing f*(z) to z. Applying ;-Koebe’s distortion theorem, we see that f, (B(y(z),S(SZ)) D
B(z,(87)7") for all £ > 1 large enough. Thus f*(B(z, (87)7")) C B(y(z),3d,), and conse-
quently the family of maps f** : B(z, (87)7') — € is normal, which contradicts the fact that
z € J(F) and shows that limy_, |(f**)'(2)| = +o0. Since |f’| is uniformly bounded on Q)
and since sy = ny + 1, we conclude that also limy_, [(f™)'(2)| = +00. We are done. B

Lemma 3.13. Let v be an arbitrary conformal measure for F. Then for every non-empty
open set U C @), we have
limsupv(F"(U)) = 1.
n—0o0

Proof. Let U be a connected component of 71 (U). Since periodic points of f are dense
in ¢ U contains a repelling periodic point w. Denote the period of w by p. There then
exists an open ball W C U centered at w such that f?(W) > W. Since w € @ = J(f?),
Unso fP*(W) D @'\ {0}. Hence for every n > 1

Fr(m(W)) = (7" (W) > m(W)

and

U Fx(W)) = U »(f"(W)) == (U fp”(W)> O m(C\{0}) = Q.

n>0 n>0 n>0

(3.25)
Thus

lim »(FP(x(W))) = v (U F””(w(W))) =v(Q) =1.

n— 00
n>0

Since 7(W) C 70 = U, we are done. m

Corollary 3.14. If v is a conformal measure for F' and U C Q is an arbitrary open set then
v(U) > 0.

Now, we are ready to conclude the following theorem. After the above preparation, the proof
is rather standard. It follows the idea of the analogous theorem in [UZ1]. However, we present
it here for the sake of completeness and since some details are different.
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Theorem 3.15. The h-conformal measure m is a unique probability t-conformal measure for
F:J(F)— J(F) with t > 1. In addition, m is conservative and ergodic.

Proof. For all s, > 1 put

Zgy={z€ J.s:0,(s) > 1/1}

(see (3.24) for the definition of 0,(s)). Fix z € Zy;. Recall that, by Definition 3.11, y(z) =
limy o f°+(2). Without loss of generality we may assume that |y(z) — f*)(z)| < (4KI)~! for
all k > 1. Consider the holomorphic inverse branches F**) : B(r(y(2)),3/l) — Q sending
Fsk(z)(z) to z. Suppose that v is an arbitrary t-conformal measure with ¢ > 1. Since, by
i—Koebe’s distortion theorem and the standard version of Koebe’s distortion theorem,

FoO(B(r(y(2)), 3/1)) > F @ (B(F*E)(2),2/1)) > ( 211 (Fs’“(’)(2>|l>

and
1 1

£ (3 (000 ) < 7 (0 (1)) € - o)

Using the conformality of the measure v along with the standard version of Koebe’s distortion
theorem, and the fact that inf{v(B(w, (2KI)™")) : w € B(0, |\|e*)} > 0, we deduce that

B, 1,s) " 're(2) < v(B(z,1(2))) < B(v, 1, 8)ri(2)", (3.26)

where 74(2) = (20)7Y|(F*)(2)|~* and B(v,l) depends only on v [ and s. Fix now FE, an
arbitrary bounded Borel set contained in Z ;. Since m is regular, for every x € E there exists
a radius r(x) > 0 of the form r,(z) such that

m(|J B(z,r(z)) \ E) < (3.27)

Now by the Besicovic theorem (see [Gu]) we can choose a countable subcover { B(x;, r(x;))}2,,
r(z;) < e, from the cover {B(x,r(x))}seg of E, of multiplicity bounded by some constant
C' > 1, independent of the cover. Therefore by (3.26) and (3.27), we obtain

<Z B(xi,r )<BVZSZ7”

< B(v,1,5)B(m,1,s) ;T(%)t* m(B(wi,r(:))) (3.28)

< B(v,l,s)B(m,], S)C’st_hm(ij B(wi,r(x;)))

i=1
< CB(v,1,s)B(m,1,5)"™ (e + m(E)).
In the case when ¢ > h, letting ¢ \, 0 we obtain v(Z,;) = 0. Since .J, = Us>1 Uj>1 Zs,1, we

thus conclude that v(J,) = 0. This contradiction shows that ¢ < h. If ¢ < h, then exchanging
the role of v and m in the above reasoning , we would get m(J,) = 0. Thus ¢ = h. Then
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(3.28) and (3.28) with exchanged roles of measures m and v show that the measures v and
m are equivalent.

Let us now prove that any h-conformal measure v is ergodic. Indeed, suppose to the contrary
that F~!(G) = G for some Borel set G C J(F) with 0 < m(G) < 1. But then the two
conditional measures vz and v\ a
v(BNG) v(BN (J(F)\ G))
va(B) = ——=—
v(G) v(J(f)\G)

would be h-conformal and mutually singular; a contradiction.

, vyrna(B) =

If now v is again an arbitrary h-conformal measures, then by a simple computation based on
the definition of conformal measures we see that the Radon-Nikodyn derivative ¢ = dv/dm
is constant on grand orbits of F'. Therefore by ergodicity of m we conclude that ¢ is constant
m-almost everywhere. As both m and v are probability measures, it implies that ¢ =1 a.e.,
hence v = m.

It remains to show that m is conservative. We shall prove first that every forward invariant
(F(E) C E) subset E of J(F) is either of measure 0 or 1. Indeed, suppose to the contrary
that 0 < m(E) < 1. In view of the second part of Theorem 3.8, it suffices to show that

m(E N Jr,M) = 0,

where M comes from Theorem 3.8. Let

(3.29)

m(B(z,T) NEN J,«,M)
Z = zEEﬂJ,«,M:li_r% =

m(B(z,7))
In view of the Lebesgue density theorem (see for example Theorem 2.9.11 in [Fe]), m(Z) =
m(E). Since m(E) > 0 we find at least one point z € Z. Let {ng(z)}32, be sequence
associated to z by virtue of the definition of the set J, ;. Let ¢, be the number defined in
formula (3.24) and let y(z) be defined as in Definition 3.11. Put n = 0,/8. Suppose that

m(B(y(z),n) \ £) = 0. By conformality of m, m(F(Y)) = 0 for all Borel sets ¥ such that
m(Y’) = 0. Hence,

0=m(F"(By(2),m)\ B)) = m(F"(B(y(2),m) \ F"(E))

> m(F"(B(y(z),n) \ E) > m(F"(B(y(2),1)) — m(E)
It therefore follows from Lemma 3.13 that 0 > 1 — m(F), which is a contradiction. Conse-
quently m(B(z,n) \ E) > 0. Hence for every j > 1 large enough, m(B(F”J'(Z)(z), 2n) \ E) >

m(B(y(z),n) \ E) > 0. Therefore, as F~*(J(F)\ E) C J(F) \ E, the standard application
of Koebe’s Distortion Theorem shows that

. m(B(z,r) \ E)

lims

ot m(B(z )
which contradicts (3.29). Thus either m(E) =0 or m(E) = 1.

(3.30)

>0
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Now conservativity is straightforward. One needs to prove that for every Borel set B C J(F)
with m(B) > 0 one has m(G) = 0, where

G={zeJ(F):> xs(f"(z)) < +oo}.

n>0
Indeed, suppose that m(G) > 0 and for all n > 0 let
Gp,={zeJ(F): Y xp(F*(x)) =0} ={z € J(F): ff(z) ¢ B forall k>n}.

k>n
Since G = U,,>¢ Gn, there exists ny > 0 such that m(G,,) > 0. Since all the sets G,, are
forward invariant we conclude that m(G,,) = 1. But on the other hand all the sets F~"(B),
n > k, are of positive measure and are disjoint from G,,. This contradiction finishes the
proof of conservativity of m. m

4. INVARIANT MEASURE

In this section we show the existence and uniqueness of a probability F-invariant measure
equivalent to m. We first prove the following.

Lemma 4.1. Up to a multiplicative constant there exists a unique F-invariant, o-finite mea-
sure j, which is conservative, ergodic and equivalent to the h-conformal measure m.

The idea of the proof of Lemma 4.1 is to apply a general sufficient condition for the existence
of o-finite absolutely continuous invariant measure proven in [Ma]. In order to formulate this
condition suppose that X is a o-compact metric space, m is a Borel probability measure on
X, positive on open sets, and that a measurable map 7" : X — X is given with respect to
which measure m is quasi-invariant, i.e. m o T ! << m. Moreover we assume the existence
of a countable partition « = {A, : n > 0} of subsets of X which are all o-compact and of
positive measure m. We also assume that m(X \ U,s¢ An) = 0, and if additionally for all
m,n > 1 there exists £ > 0 such that -

m(T~%(A,) N A,) > 0, (4.1)

then the partition « is called irreducible. Martens’ result comprising Proposition 2.6 and
Theorem 2.9 of [Ma] reads the following.

Theorem 4.2. Suppose that o = {A,, : n > 0} is an irreducible partition for T : X — X.
Suppose that T is conservative and ergodic with respect to the measure m. If for everyn > 1
there exists K,, > 1 such that for all k > 0 and all Borel subsets A of A,

m(A) _ m(THA) . m(A)
(A = mTHA)) ()

K, ! (4.2)
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then T has a o-finite T-invariant measure p absolutely continuous with respect to m. Addi-
tionally 1 is equivalent with m, conservative and ergodic, and unique up to a multiplicative
constant.

Proof of Lemma 4.1 (sketch). Since in the sequel we will not only need Lemma 4.1 but a bit
more, namely the way in which the invariant measure claimed in Theorem 4.2 is produced,
we shall also describe this procedure briefly. Following Martens, one considers the following
sequences of measures

Skm

k-1
Sym = T~ and = 0.
KM gmo nd Qrm Sem(Ay)

It is proven in [Ma] that each weak limit p of the sequence QQxm has the properties required
in Theorem 4.2, where a sequence {vy : k > 1} of measures on X is said to converge weakly if
for all n > 1 the measures v, converge weakly on all compact subsets of A,,. In fact it turns
out that the sequence Qym converges and

p(F) = lim Qym(F)

for every Borel set F' C X. Of course u(A) < 1 < oo. Making use of (4.1) and (4.2) one
proves (see Lemma 2.4 in [Ma]) the following.

Lemma 4.3. For every n > 0 we have 0 < u(A,) < oo, even more, the Radon-Nikodym

derivative (‘ii—?f,‘l is bounded on A,,.

and

Lemma 4.4. For all i,5 > 0 there exists a costant kK > 0 such that
Spm(D) m(D)
K
S,m(E) — m(E)
for alln > 1 and all Borel sets D C A; and E C A,.

Let us pass now to our map F': () — (). The ergodicity and conservativity of the measure m
is proven in Theorem 3.15. Thus, we only need to construct an irreducible partition o with
property (4.2). Indeed, set Y = J(F) \Bf" For every y € Y consider a ball B(y,r(y)) C @
such that (y) > 0, m(dB(y,r(y))) = 0, and r(y) < (1/2)dist(y, 5°). The balls B(y, r(y)),
y € Y, cover Y and, obviously, one can choose a countable cover, say {fln :n > 0}, from
them. We may additionally require that the family {fln :n > 0} is locally finite that is that
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each point z € Y has an open neighborhood intersecting only finitely many balls A,,, n > 0.
We now define the family o = {A4,, : n > 0} inductively setting

Ay = 1210 and A, = AnJrl \ U AN_n
k=1

(and throwing away empty sets). Obviously « is a disjoint family and
U A, D J(F)\ (6 U | 94,).
n>1 n>0

Hence, in view of the last assumption of our theorem, m(UnZO An) = 1. The distortion

condition (4.2) follows now from Koebe’s distortion theorem with all constants K,, = K, and
irreducibility of partition « follows from openess of the sets A, and Lemma 3.13. B

For the proof of Theorem 4.6, the main result of this section, we will need the following.

Lemma 4.5. There ezists R € (0,7/2) such that for every t > 0 there ezists a constant
C(t) > 0 such that

m(B(Ba, 1)) < CO)r|(F)' (0)"
for alln >0 and all r € [0,1).

Proof. Combining (3.12) and (3.13), we see that for every k > 2

m(B(Oa Tk)) = |6k+2|7ﬁa

where  is the fixed positive number, introduced in (3.9) and 7y = (4]51]|Bz|- - -+|8e]) 7Bk ~"
Consider an arbitrary radius r € (0,75]. Then 74,1 < r < 1y for some £ > 2. Hence, using
our super-growing condition (1.1) and Lemma 3.5, we get easily

m(B(0,r)) < m(B(0,74)) = |Besa|™ < Co(t)rigr < Colt)r! (4.3)

for some constant Cy(t) and we are done with the case n = 0. Since lim,, ., oy, = lim,, o0 |Gn] =
~+00, the set Bn has no accumulation point in () and there exists R > 0 such that holomorphic
inverse branches F;™ : B(Bn, 2R) — @ of F™ sending B, to 0 are well-defined for all n > 1.
Hence, using Koebe’s distortion theorem and h-conformality of the measure m, we get for
every r € (0, R) that

m (B0, K|(F")(0)[7'r)) > m(Eg™(B(B, 7)) > K"|(F")(0)["m(B(B,, 7).
Hence
m(B(B,,r)) < K"|(F*)(0)["m(B(0, K|(F")'(0)| 7))
< KM Gy (F) O (Kr|(F"Y () 7') = KM Coe)r| (FY ()"~ = Cr'|(FY ()~
where C(t) = K""Cy(t). =
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Our next, technically most involved, goal is to prove the following main result of this section.

Theorem 4.6. The o-finite, F-invariant measure | equivalent to the h-conformal measure
m, produced in Lemma 4.1, is finite.

Proof. Let {A,},>0 be the irreducible partition constructed just before Lemma 4.5. We
may assume without loss of generality that Ay = B(2',£) C B(0,R) for some 2z’ € @ and
some & € (0, R). Fix r € (0, R]. Decreasing r > 0 if necessary, we may assume that

') n | BB, r) = 0.
k=0
We shall write 2’ + 27ij to denote the unique point in 7~'(2’) with imaginary part in the
interval [277,2m(j + 1)). Let
D, ; := B(2mij, |45,])
Take now n > 1 so large that for every j € Z
Dwﬂ{ﬁkchn—i—l}:(b

The last property is guaranteed by the super-growing condition (see (1.1) and (1.2)). Fix a
point
n
2" € B(2mif, 2|6,]) \ U B(Br, 7).
k=0
It the follows from Lemma 3, p. 152 in [Ha| that there exists a simply connected open set
Dy, ; C Dy jsuch that 2'+27ij, 2" € D} ., B1, B2, ... ,Bn & D, ; and for all n > 1 large enough

1 1 1 1
pn(2' + 2mij, 2" Dy, ) < pu(2' + 2mig, 25 Dy jj) + §A <n + log ;) <A+ §A <n + log ;)

1
§A<n+log—>,
r

where A > 0 is some unversal constants and py, is the hyperbolic metric in respective domain
D;, ; or D, j. Consequently, it follows from Koebe’s distortion theorem that if H : D;, ; — €
is a univalent holomorphic function, then

|H'(2' + 2mij)| ( ( 1)) oA (1)“
=< A log—)) < - . 4.4
T S exp | 6A [ n + log _)) Se . (4.4)

Consider now an arbitrary geometric disk S C @ with radius < r/2 and the center w ¢
B(Bgo, r). In particular 2Sﬂ5(‘)’° = (). Let n = n(S) be the least integer such that S C Qo sy +1-
Notice that all holomorphic branches of all backward iterates of F' are well defined on 2S.
Fix one such branch F,*:2S — Q. Then F,* = 7o f, *or, ! where 7 ! is an appropriate
holomorphic inverse branch of 7 defined on 2S5, and f,* : 7,1(2S) — @ is an appropriate
holomorphic inverse branch of f*. Write 7, !(w) = w + 27ij for some j € Z and note that

7, Y (w) € 7,;1(25) C B(27rij,2|5n(5)|) and 7' (w) ¢ B(B5°,r). Apply now considerations

leading to (4.4) with 2" = 7, '(w). Since D, ; is simply connected, since D;, ;N 35° = () and
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since 7, ' (w) € ;' (25)ND;, ;, there exists a unique holomorphic continuation f, S D, ;=

of the branch f;%: 7;'(25)N D, ;. So,

—k
fu’ |7r;1(2S)ﬁD;L,j = |

ZS)mD’ :

In particular f,* (7, (w)) = f,*(7, ' (w)). Since (24 +27ij) N B = () and since 2’ + 2mij €
(A0+2m'])ﬂD7’z j» there exists a unique holomorphic inverse branch foF2A042mij — @'such
that frl (Ao+2mig)nD), ; = = "l (Ag+2mij)nD), ;- In particular R (2 4 2mig) = £,5 (2 + 2mig). Let
EF:24) = Qbe deﬁned by the formula FT,k = To V,,ko7r] , where 7r’1( ) = z+2mij. Notice
that the mapping F7* — F,F is a bijection between the set of all holomorphic inverse branches
of F* defined on 25 and those defined on 2A,. Applymg (4.4) to the map f,* : D, ; — @, and
using Koebe’s distortion theorem to the maps 17 1(28) — @ and f,F : 24, + 27ij — @,

we obtain for all x € S and all y € Ay that

EY @] D ER @) o (G @ @] sans) (1)
) = =K < ()

pl — (FS ()] (£ (2 + 2mig)| —
Since m(F,, *(S)) < (sups{|(F,*) I}) m(S) and since m(F;(Ao)) > (infa,){|(F, Y I}) m(A

we therefore get
—k 6Ah
n(FA(S) <sups{|< by |}> ) ) (N )
m(FF(Ao)) — \infa, {|(FF)1}) m(Ao) r
Summing over all branches v, we thus get

m(FH(S)) < exp(@Amn(3)) (5 ) m(EH(A0)m(S).
It immediately implies that
1(S) < exp(6Ahn(S)) (%) m(S). (4.5)

Assume now R € (0,1) to be so small that all the balls B(Bn,2R), n > 0, are mutually
disjoint. Our goal now is to estimate the measure p of the neighbourhood of ,. To do so,
we divide each ball B(f,, R) into geometric annuli

R
BB 30\ B, 51y)
Obviously, each annulus can be covered by a bounded (independent of k and n) number of
balls By, with radius equal to R2-(+1 " So, consider an arbitrary ball B, C B(Bn, 2k)

k > 0, with radius equal to B2~ **Y and the center at the distance from Bn exactly equal to
27%R. Tt then follows from (4.5) and Lemma 4.5 that

M(Bk) < C(t) -eXp(GAh,n) (%) (2_Ii> |(fn)/(0)|h—t < C(t)|(fn)l(0)|_u2_uk

0),
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with an arbitrarily large u assuming ¢ to be large enough. Notice now that there exists an
integer L > 1 so large that appropriately choosing for each £ > 0, L balls of the form B, 4,

we will cover the punctured disk B(f,, R) \ {5,}. Hence

> (BB, R) X LY i [(f)'(0)|7 27" < D7 |(F)'(0)]7* < oo (4.6)

n>0 n>0 k=0 n>0
Obviously, there exists an integer 7" > 1 such that each set

={#€Q:a, <Rez<a,u}\ U B(B,R), n>0,

k=0
can be covered by no more than 7'(a,41 — ) balls with radii R/2 and centers lying in W,,.
Applying then (4.5) and (3.6) (each of these balls is contained in Y,' ), we obtain

) 6Ah 1
p(Wy) 2 T (a1 — ay) exp(6Ah(n + 1)) (—) exp(—(l - h)an) < Qe uan
R 2
(4.7)
for some constant C' and for some positive u. The last inequality follows from super-growing
condition (1.1). Since the measure p is F-invariant and since there exists N > 0 so large that
F(Yy) € B(0,R), we conclude from (4.6) that p(Y;") < oo. Combining this along with (4.6)
and (4.7), we deduce that

(Y UU( (Ba, R )><oo.

Since it is obvious that the complement of this set has a finite measure p, we are done. B

5. HAUSDORFF AND PACKING MEASURES

Let H* and P" be be respectively the h-dimensional Hausdorff and packing measures (see
[TT], comp. [PU] for example, for its definition and some basic properties). The results of
this section provide in a sense a complete description of the geometrical structure of the sets
J-(F) and J,.(f) and also they exhibit the geometrical meaning of the h-conformal measure m.
The short proof of the first result improves on the argument from the proof of Proposition 4.9
from [UZ1].

Proposition 5.1. We have P"(J,(f)) = P"(J.(F)) = co. In fact P"(G) = oo for every open
nonempty subset of J.(f).

Proof. Since m(J.(F) NY,;)) > 0 for every M € IR, it follows from Birkhoft’s ergodic
theorem, Theorem 4.6 and Theorem 3.15 that there exists a set £ C J,.(F') such that m(E) =1
and liminf, ,,, ReF™(z) = —o0. for every z € FE. Fix z € E. The above formula means that
there exists an unbounded increasing sequence {n;}°,, depending on z, such that

klggj Re(F™(z)) = —oo. (5.1)
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Since lim,,_, o, v, = 400, the balls B(F™(z), 1) are for all k£ large enough, say k > ¢, disjoint
from the set 55°. Fix k > ¢ and consider the ball B(z, K !|(F")'(z)|™!). Then

B(z, K~H(F™)'|(2)|™") € F7™(B(F™(2), 1)),

where F,™ is the holomorphic inverse branch of F", defined on B(F"(z),1) and mapping
F™(z) to z. Applying Koebe’s distortion theorem and conformality of the measure m, we
obtain

m(B(z, K (F™) ()71 < K"(F™) (2) " m(B(F™(2),1))

< K (EHE™) ()7 m(Vieprz)-1)

Since by (5.1), limy—oo m(Ygepni(,) 1) = 0, we see that

lim inf 7m(B(z, )
r—0 'rh

=0.

Since m(G N J.(F)) > 0 for every non-empty open subset of .J.(F), this implies (see an
appropriate Converse Frostman’s Type Theorem in [DU2] or [PU]) that P"(G) = co. Since
J.(f) =7 Y((J.(F)) and 7 is a local isometry, we are therefore done. ®

Theorem 5.2. The h-dimensional Hausdorff measure restricted to the set J.(F') is positive,
finite, and absolutely continuous with respect to the h-conformal measure m.

Proof. We shall show first that H” 7.(F) 1s absolutely continuous with respect to m and
finite. Fix z € J, p(F). This implies (see the considerations after Remark 3.10) that there
exists an increasing unbounded sequence {sj}°, and a positive number ¢,(M) such that
@ (2) — y(2), |y(2)| < |A\eM and a holomorphic inverse branch of f~*¢ sending f*(2)
to z is well defined on the ball B(f™(z),d,(M)). Denote by 7' : B(F**(z),7) — € the
holomorphic inverse branch of the projection 7 : @ — @, which sends F**(z) to f*(z). Then
the composition F** = mo f7% o, ' : B(F*(z),6,(M)) — @ is well-defined and forms a
holomorphic inverse branch of F*¢ sending F***(z) to z. In this way, taking an appropriate
component, of preimage F =5 (B(F*®(2)),0,(M)) we get a neighbourhood of z, contained in
a ball of radius K\(FTM(SZ(M)- This allows us to construct, for every point z € J,, a
sequence of balls of radii rx(z) converging to 0 (see Lemma 3.12) for which we can estimate,
using conformality of the measure m:

m(Blan(:) = k- dnf - m(B(w,6.(M)).

This is enough to conclude (see an appropriate Converse Frostman’s Type Theorem in [DU2]
or [PU]) that for every M the measure H‘hJT’M is absolutely continuous with respect to m and,
consequently, Hffh( ") is absolutely continuous with respect to m. Now, there exists M = M,
so that m(J. ) = 1 (see Theorem 3.8). Moreover, there exists a positive number §,; such
that for m almost every point z € J, 5 it holds 6,(M) > dpr (see Remark 3.10). So, there



24 MARIUSZ URBANSKI AND ANNA ZDUNIK

exists a set H C J, 5 such that m(H) = 1 and for for each point z € H one can find a
sequence of radii 74(z) — 0 for which a uniform estimate holds:

> h . 3 > h
m(Bn() =k nf | m(B(w,ow)) = Cr

where the constant C' does not depend on z. This implies in a standard way that the h-
dimensional measure of the set H is finite. Since m(J,.,\ H) = 0, we conclude that H"(.J, 5\
H) =0 (we already know that Hy, is absolutely continuous with respect to m). Consequently,
H"(J.) = H*(H) < co. Finally, we know from Theorem 3.8 that m (J.(F)\ J.(F)) = 0.
Therefore (again, by absolute continuity)

HY (J,(F) \ Joas (F)) = 0.
This proves that the h-dimensional Hausdorff measure of J,(F) is finite.

We shall prove now that H"(J.(F)) > 0. Since (3, tends to infinity fast (see (1.1)), there
exists 1 > @ > 0 such that |3; — ;| > 0 for i # j. So, fix z € J, and r € (0, 7). Since, by
Lemma 3.12, limsup,,_, . |(f™)'(z)| = +o0, there exists a least n = n(z,r) > 0 such that

rl(F* VY (2)] = 0(32K) 7.
Thus
rl(f™) ()] < 9(32[()*1. (5.2)

Suppose that the holomorphic inverse branch of f™ defined on B(f™(z),32r|(f")'(z)|) and
sending f"(z) to z, does not exist. Then n > 1, and let 1 < k < n be the largest integer such
that the holomorphic inverse branch of f*~*=1 defined on B(f"(z), 32r|(f")'(z)]) and sending
f™(2) to f¥=1(2) does not exist. This implies that 0 € f,;(n_k)(B(f”(z), 32r|(f™)(2)])), where
F7E L B(fm(2), 32¢|(f7)'(2)]) — @'is the holomorphic inverse branch of f*~* sending f(2)
to f¥(z). Thus, B € B(f"(2),32r|(f")'(z)|. But 32r|(f")'(2)| < £ < % and, by the definition
of 0, there are no other images of 0 even in the ball B(f"(z),64r|(f")(z)|). So, we can use

n—k)

Koebe distortion theorem for the map fk_( as follows.

0 € S CIBE). 3V © BIPE)L32ETY G,
and therefore |f*(2)| < 32K7r|(f*)'(2)|. On the other hand, since 7|(f*~1)(2)| < (32K)~!, we
conclude that
32K |(f*) (2)| = 32Kr|(f*71) ()1 (f* 71 ()| = 32Kr|(f*71) ()| fE ()| < 01 f* ()] < | £¥(2)].

This contradiction shows that the holomorphic inverse branch f, " : B(f"(z),32r|(f™)'(2)]) —
C'of f" sending f"(z) to z, is well-defined. Now, the map f restricted to B(f"(2), 32r|(f™)'(2)|)
is 1-to-1, and by Koebe’s i—Theorem

F(B(™(2), 32 (f7) (2)) D B(f" (2), 8¢ (/") (2)])-
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Hence there exists a unique holomorphic inverse branch f7 "+ : B (f”“(z), 8r|(f1)(2) |) —

@ of f"*' mapping f™(z) to z. Applying Koebe’s ;-Theorem again, we see that
£ 0B (), 47 (f) (2)])) D B(z,7)- (5.3)

Since the ball B(f”“(z), 47“|(f"+1)’(z)|) intersects at most 5=4r|(f"™)(2)|+1 < r|(f"1)(2)|
horizontal strips of the form 2mij + (IR x [0,27)), j € Z, using (5.3) Koebe’s Distortion
Theorem, h-conformality of the measure m and, at the end, (5.2), we get

P m(B(2,r)) < KM Y Y @D m(r (B @) 4l ()
< PR ) ))
= KM(r](F Y () < K 0) R (328)

We are done by applying an appropriate Converse Frostman’s Type Theorem in [DU2] or
PU]. m

Theorem 5.3. We have HD(J,(f)) = HD(J,(F)) = h € (1, 2).

Proof. It follows immediately from Theorem 5.2 that HD(J,(f)) = HD(J,(F)) = h. We
know already that h > 1. In order to prove that h < 2, let us recall that it follows from
Proposition 5.1 that for every open set Z such that ZN.J,.(f) # 0 we have P*(J.(f)NZ) = oco.
In particular, if Z is a ball, assuming h = 2 we get co = P*(Z N J.(f)) < P*(Z), thus
P?(Z) = oo, which is a contradiction. m

Finally, let us notice that the following result of Lyubich ([Lyu]) and Rees ([Re]) can be
deduced as a corollary:

Corollary 5.4. If X is a super-growing parameter then for Lebesque almost every point z € '
w(z) = f5° U {oo}.

Proof. Since HD(J,.(f)) < 2, the complement of J, is a set of full measure. Fix a point
z ¢ J.(f). By the definition of J,.(f), this implies that w(z) C {oco} U B5°. We only have to
check that, actually, the equality holds for almost every point. So, assume that w(z) = oc.
The set of such points has Lebesgue measure 0; actually, this is true for a large class of maps,
see e.g. [McM] or [EL]. Next, assume that w(z) = {oo} U z° for some k£ > 0. Thus, there
exists an infinite sequence of integers s; such that f%(z) — f. Then, denoting n; = s; — 1,
we see that Ref"(2) — Ref and, moreover, dist(f"(z), 52°) > 0. Consequently, z € J,.(f),
a contradiction. We are done. B

Remark 5.5. Actually, the result in Lyubich’s paper is stated for A = 1, but his proof extends
in a straightforward way to all maps f\ with super-growing parameter A. So, the statement of
the corollary is not new.
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[t is natural to ask about the dependence of the dimension HD(.J,(fy)) on A. Below, we sketch
a proof of one partial result: Denote by M,y the set of parameters for which the condition
(1.1) holds with a constant ¢ and for all n > N . Let A € M, n. Using the arguments of [UZ1],
one can easily check that there exists a neighbourhood U of A in € and a constant s > 1 such
that HD(Ja(f,)) > s for every p € U . This, in turn implies that h, = HD(J,(f,)) > s.
Following the way of proof of Lemma 3.4 we can show that the family of conformal measures
my, b € M, xOU is tight. If A, € M, y and A, — A then one can choose a subsequence ny, such
that my,, converges weakly to some measure m . One can also assume that hAnk — h > s.
Then one can check that this limit measure is h-conformal for the limit map f). It follows
now from the uniqueness of conformal measure that h = h,. Thus, the following theorem is
true (we omit details of the proof).

Theorem 5.6. The function A\ — HD(J.(f\)) is continuous in the set M, . In particular,
it is continuous in {\ € R,\ > 1}.
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