MAXIMIZING MEASURES ON METRIZABLE NON-COMPACT SPACES
MARIUSZ URBANSKI AND ANNA ZDUNIK

ABSTRACT. We prove the existence and uniqueness of maximizing measures for various
classes of continuous integrands on metrizable (non-compact) spaces and close subsets of
Borel probability measures. We apply these results to various dynamical contexts, especially
to hyperbolic mappings of the form f\(z) = Ae*, A\ # 0, and associated with them (as in [8]
and [9]) canonical maps Fy of an infinite cylinder. It is then shown that for all hyperbolic
maps F) and all 0"-potentials ¢, the set of (weak) limit points of equilibrium states of of
potentials t¢, t / +00, is non-empty and consists of dynamically maximizing measures with
compact supports.

1. INTRODUCTION

In this paper we deal with the general problem of the existence and uniqueness of measures
maximizing integrals of certain continuous functions ¢, which we call escaping to —oo, defined
on some metrizibale spaces. The significance of such measures in a dynamical context is well
explained in [2], [4] and [5]. The setting of the first part of our paper does not require any dy-
namics. In fact we fix a closed set €2 of Borel probability measures (note that if the referenced
metrizable space J is not compact then such set does not have to be compact either) and
we look for measures in 2 maximizing integrals of (. Obviously, if the space J is compact,
then maximizing measures always exist. In a non-compact case this problem becomes critical.
We solve it positively in Section 4 for all continuous escaping to —oo potentials under mild
assumptions on the set 2 of considered measures. The next section, Section 5 contains aux-
iliary, though interesting themselves results from topology and measure theory. In Section 6
we ask the question of uniqueness of maximizing measures of potentials escaping to —oo.
This is a delicate problem even in the best understood dynamical context case of subshifts
of finite type since one can very easily construct potentials depending only on finitely many
coordinates for which this uniqueness fails. Developing the approach from [4] and [2], which
in our case meets different type of technical problems, we answer this question positively for
G5 dense subsets in some naturally emerging metric subspaces of the space of all continuous
functions. The next section, Section 7 contains straightforward dynamical consequences of
the general results proved in the previous sections. In the last section, Section 8, dealing,
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except at its very beginning, exclusively with hyperbolic exponential functions and a natural
subclass (17-tame) of Holder continuous potentials, we undertake an approach stemming from
thermodynamic formalism. First we show that the Gibbs measures p4 of such potentials ¢
proven to exist in [10] (comp. [9] for the class of potentials of the form z — —tRez (¢ > 1)
turn out to be equilibrium states for ¢. We then demonstrate that the family {zup}>1 is
tight when t 7 +o00, and that all its limit points are dynamically maximizing measures for ¢.
The estimates obtained in the course of this proof enable us to conclude that all those limit
measures have compact supports.

2. WEAK CONVERGENCE AND TIGHTNESS

Let X be a metrizable topological space. By C(X) we denote the space of all real-valued
continuous functions defined on X, and by Cy(X) its subspace of bounded functions. Denote
by M(X) the space of all Borel probability measures on X endowed with the topology of
weak convergence. Recall that a sequence {u,}5°, C M(X) converges weakly to a measure
w € M(X) if and only if

Jim / gdpy = / gdp
for every function g € Cy(X). A family F C M(X) is said to be tight if and only if for every
e > 0 there exists a compact set F' C X such that u(X \ F) < ¢ for all 4 € F. Notice
that if X is compact, then every family F C M (X) is obviously tight. We will be however
preoccupied mostly with metric spaces which are not necessarily compact, and the concept
of tightness is important to us because of the following well-known fact (see for example [1]).

Theorem 2.1. (Prokhorov) If X is a Polish (complete metrizable and separable) space, then
every tight family of measures from M(X) is a pre-compact subset of M(X).

Since we will deal with several topologies on subsets of M(X), we will call any closed or
compact subset of M(X) (endowed with the weak convergence topology) respectively weakly
closed or weakly compact.

3. FUNCTIONS ESCAPING TO —00

Let J be a metrizable topological space. A function ¢ : J — IR is said to escape to —oo
provided that for every ¢ € IR there exists a compact set F' C J such that ((J\ F) C (—o0, ).
We then say that ¢ € C_,(J). We shall prove the following easy but interesting fact.
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Proposition 3.1. If J is a metrizable space, ( € C_(J), then for every t € IR, the set
CH([t, +00)) is compact.

Proof. Suppose that ¢ € C_,(J) and fix t € IR. Then there exists a compact set F' C J
such that ¢(J\ F) C (—o0,t). So, (7'([t,+o0)) C F, and since ¢~'([t,+00)) is closed, we
conclude that this set is compact. In order to prove the opposite implication, suppose that
the right-hand side of our equivalence is true and fix s € R. Then ((J \ ("!([s, +o0)) =
C(¢H((—00,8))) C (—o00,s), and as (*([s, +0o0)) is compact, we are done. W

Proposition 3.2. If J is a metrizable space and C_o(J) # 0, then J is a locally compact
o-compact Polish space.

Proof. Let x € J. Since x € C‘l((C(x) -1, oo)), since C‘l((g(x) -1, oo)) C J is an open
set, and since ¢! ((C(x) -1, oo)) C C‘l([C(x) -1, oo)), where the latter sat is compact, we see

o0

that J is locally compact. Thus, it it is completely metrizable. Since J = [J22, ¢ ([n, +00)),
the metrizable space J is o-compact, and therefore separable. We are done. B

We also need the following straightforward.

Proposition 3.3. If ( € C_(J), then the function ¢ : J — IR is bounded above and it takes
on its supremum.

Proof. Indeed, take an arbitrary ¢ € ((J). Then ([, +00)) is a compact subset of J and
therefore the supremum

sup(¢) = sup (Cle-1 (g 400 ) < +00
is attained on (7([t, +o0)). W

It follows from this proposition that the integral [ (du (allowed to be —o0) is well-defined for
every p € M(J) and is < +o0.

4. EXISTENCE OF MAXIMIZING MEASURES

Call a triple (J, ¢, ) maximizable if J is a metrizable space, ( € C_,(J), and ) is a non-
empty weakly closed subset of M(J) such that [(du € (—o0,+00) for some p € . The set
Q) is then called (-acceptable. Notice that this holds if for instance € contains at least one
measure with compact support. The name "maximizable” will be wholly justified by the last
result of this section. For every T' € IR set

2(CQT) = {neQ: [Cu=T} and B4(¢0T) = {neQ: [Cdu=T)
We shall prove the following.
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Lemma 4.1. For every T € IR the set X, ((,Q,T) is weakly compact.

Proof. For every u € ¥,(¢,Q,T) and every s > 0, we have

r= /Cdﬂ - /Cl((—ooy—S)) Capt /Cl([—SH-OO)) i
—s1(C (=00, —5))) +sup(Q)p(¢ " ([=s, +00)))
< —s,u(C’l((—oo, —5))) + max{0, sup(¢) }.

Hence, ,u(C_l((—oo,—s))) < st (max{(),sup((’)} — T). Therefore, for every ¢ > 0, taking
s.=¢ ! (maX{O,sup(C)} — T), we see that u({’l((—oo, —55))) <eforall pex (¢,07).
Since J\ ("H((—o0, —s.)) = (7 *([sc, +00)) is a compact set, we therefore see that 3, (¢, 2, T)
forms a tight family of measures. Thus, by Prokhorov’s Theorem, ¥, (¢, 2, T) is weakly pre-
compact, and we are left to show that ¥, ((,Q,T) is weakly closed in M(J). Toward this
end consider an arbitrary sequence {p,}>°, C X,(¢,Q,T) converging weakly to a measure
€ M(J). Since € is weakly closed, p € Q. For every k > 1 put

Ck = maX{Ca _k}

Then (, € Cy(J(F)) for every k > 1 and the non-increasing sequence {(;}32; converges
pointwise to (. Using Lebesgue’s monotone convergence theorem we therefore get

[ in= [ Jim G = i f o= tim (i, [ )

> likr:n inf limsup [ {du, > limsupT =T.

n—~oo n—oo

IA

So, i € 3,(¢,Q,T) and we are done. ®

Let
s(¢) = Sup{/ Cdp s p € O}

Since ¢ € C_(J), we have s({) < 400. Since 2 is -acceptable, s(¢) > —oo and ¥, ((,Q,T) #
0 for all T < s(¢). Since in addition 3(¢, 2, 5(¢)) = MEZ, X4 (¢, 2 s(¢) — L), and since the

sequence {X] (5(¢) - %)}nzl is descending, as an immediate consequence of Lemma 4.1, we
get the following.

Corollary 4.2. The set (¢, 2, s(C)) is non-empty and weakly compact.



MAXIMIZING MEASURES ON METRIZABLE NON-COMPACT SPACES 5

5. TOPOLOGY AND MEASURE; AUXILIARY RESULTS

In this section we fix a metrizable space J and a function ( € C_(J). It is easy to verify
that the function || - ||¢ : Cp(J) — [0, 00) given by the formula

[9(2)]
ol|¢ = sup {7 zedJ
elle ==\ ¢
defines a norm on the linear space Cy(J). The metric p¢ : Cy(J) X (Cp(J) — [0, +00) canoni-
cally associated with the norm || - ||¢ is given by the formula
pc(0,9) = 1[¢ = 9llc-

The topology induced by the metric p. obviously depends on the function ¢. In fact two
functions (i, (s € C_(J) induce the same topology (are equivalent) if and only if

- L+ 1]G(z) 1+41G(2) . o
S“p{m {1+|c1<z>|’1+|¢2<z>|}' e‘]}<+ |

Despite this inconvenience the most transparent advantage of working with the metric p,
instead of the metric induced by the standard supremum norm is that even in the non-
compact case, we have the following.

Proposition 5.1. If ( € C_(J), then the metric space (Cy(J), p¢) is separable.

Proof. Since for every integer n, the inverse-image (~!([n,+0c)) is a compact set, the
Banach space (C(Cl([n, +oo)))7|| ‘ ||oo) is separable. Let S, C C(Cil([n, —I—oo))) be a
corresponding countable dense subset. Using Tietze’s Theorem extend each function ¢ € S,

to a function ¢ € Cy(J) such that sup(¢) = sup(¢) and inf(¢) = inf(¢). The set
S=J{o:0€85,}
nez
is obviously countable. We shall show that S is a dense subset of (Cy(J), p¢). Indeed, fix
g € Cy(J) and then € > 0. Fix n > 0 so large that
Slglle 1 _ _
1+n —

By the definition of S,, and compactness of the set (~'([n,+00)), there exists ¢ € S, such
that

(5.1)

19(2) = 6(2)] < min {1, (1 + inf{|¢(w)| : w € ¢*([n, +00))}) } (5.2)
for all z € (7*([n, o0)). Then, for every z € (~!([n, +00)), we have

l9(2) = ¢(2) _ lg(2) = é(2)] _ _
1+ [¢(2)] L+[C(z)] —
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It also follows from (5.2) that [¢(2)] < 1+ [|g]|s for all z € ¢7'([n,+00)), and therefore
|6(w)| < 1+ ||g]|eo for all w € J. Hence, using (5.1), we get that if z € (7!((—o0, —n)), then

9:) =G| _ Lo+ 3G _ 2lloe 1 _ _
1+ 1¢(2)] — 1+n - 1+n 0~
Thus pe(g¢) < e. So, S is a dense subset of Cy(J), and we are done. M.

Now let (J,(,Q) be a maximizing triple. Set

z>(CaQa_OO> :{MGQ/Cdﬂ> _OO}: U er(CaQaT)

TelrR

In view of Proposition 5.1 we can fix a dense countable set {¢,}>°, in the metric space
(Cy(J), pc). Define the function d¢ : M(J) x M(J) — [0,+00) by the formula

de(p,v) = 22_” min{1, | /gbndl/ - /¢ndu|} (5.3)

We shall prove the following.

Lemma 5.2. The function d; restricted to the Cartesian product ¥~ (¢, 2, —00) x3~((, 2, —00)
defines a metric on ¥+((, 2, —00).

Proof. Obviously the only now non-trivial task is to check that if d¢(u, v) = 0, then v = p.

Indeed, if d¢(p,v) =0, then
[ éndv = [ udn

for all n > 1. Since both measures p and v are in X+ ((, Q, —00), both integrals [(1 + |¢|)dv
and [(1+ [C])du are finite. Put

R = max{ [ (1+[¢l)dp, [ (1+]¢)dv} € (0, +00).

Fix now an arbitrary function ¢ € C,(J). Fix € > 0. By the choice of the sequence {¢,}°,
there exists n > 1 such that pc(¢,¢n)) < €(2R)™!, which means that |¢(z) — ¢n(2)| <
e(1+1¢(2)])(2R)~! for all z € J. Hence

\/d)dﬂ—/@lV\:!/¢du—/¢ndu+/¢ndu—/d)ndu+/d)ndu—/¢du\
| [ o~ [ éudpi+ [ éndv— [ oav]

< [16=ouldu+ [ 16— o,lav
<eR)7 [+ 1CEN (=) +£2R) [(1+ () dw(z)

< -+ -=c

€
2

N ™M
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Letting € \ 0, we thus get that [ ¢du = [ ¢dv. Hence = v and we are done. B

We will also need the following.

Lemma 5.3. Suppose that (J,(,Q) is a mazimizing triple. If p € $5((, 2, —00), ux €
¥.(¢, 0, —00) for all k > 1 and the sequence {ux}32, converges weakly to u, then

Jim de(pk, p) = 0.

Proof. Fix ¢ > 0. There then exists ¢ > 1 so large that 02 ;27" < £/2. Since the
sequence {}72, converges weakly to u, there exists [ > 1 such that | [ ¢,dur— [ ¢pdu| < /2
forallm=1,2,... ,q and all £ > [. Hence, for all £ > [ we have that

g €
(e o <22”|/¢nduk—/¢ndu|+22” Stz =c

n=q+1
We are done. B

Two functions ¢, 1 € C_(J) are said to be boundedly equivalent if and only if sup{|(z) —
¢(z)| : z € J} < oo (notice that if ¢ € C_o(J), ¢ € C(J) and sup{|Y(2)—d(2)| : z € J} < o0,
then ¢ € C_(J) and ¢ and ¢ are boundedly equivalent). We then write ¢ ~ ¢. Obviously
bounded equivalence is an equivalence relation on C_(J). The corresponding equivalnce
class of ¢ € C_,,(J) is denoted by [¢]. Let us record the following obvious fact.

Proposition 5.4. If ¢, € C_(J) and ¢ ~ ¢, then the norms ||-||, and ||- ||, are equivalent
and X5 (1,2, —00) = 3s (¢, 2, —00).

As an immediate consequence of the previous results we get the following.

Corollary 5.5. Suppose that (J,(,Q) is a mazimizing triple. The the following hold.

(a) The identity map Id : £5((,Q, —o0) — 35((,Q, —00) from the space ¥ ((,Q, —00)
endowed with the topology of weak convergence to the space ¥+ ((,$2, —00) endowed
with the metric d¢, is continuous.

(b) Each weakly compact subset of ¥ ((, 2, —00) is a compact set in the metric space

Z>(C7 Qa _OO>7 dC) :

(c) If ¢ € [C], then for every T € IR, the set ¥, (¢, Q,T) is compact in the metric space
(Z>(Ca Qa _OO>7 dC) :

(d) If ¢ € [C], then the set (¢, 2, s(¢)) is compact in the metric space (Z>(C, Q, —00), dg).

Proof. Ttem (a) is a reformulation of Lemma 5.3. Item (b) is an immediate consequence
of item (a). Item (c) is in turn an immediate consequence of item (b) along with Lemma 4.1
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and Proposition 5.4. Eventually item (d) is proved in the same way as item (c), only instead
of Lemma 4.1 one is to apply Corollary 4.2. &

Fix again ( € C_.(J). The formula
_ _ V() —o(2)] .

defines a metric on [¢]. We shall prove the following.

Lemma 5.6. Let (J,(,Q) be a mazimizing triple. Then the function ¢ — s(¢), ¢ € [¢] ([C]
endowed with the metric p;) is lower semi-continuous.

Proof. Fix ¢ € [(]. By Corollary 4.2 there exists p € 2 such that s(¢) = [ ¢pdu € IR. Then
J(1+|¢))du € IR. Fix € > 0. Take an arbitrary ¢ € Bp<gb,e(f(1 + |§|)du)*1). Then for every
z € J we have W( ) —o(2)] <e(f(1+]¢)du) (1 +|¢(2)]), and therefore

0)= [odu < [wdu+ [ =([(1+1cDd ™)L+ IC() (=)

:/@Z)du+5§s(¢)+s.

So,

pg$5g04w> s(9),

and we are done.

We end this section with the following.

Lemma 5.7. Let (J,(,Q) be a mazimizing triple. Suppose that g, g, € [(], n > 1, and that
lim,, o0 gn = g with respect to the metric p; on [C]. If pn € X(gn, 2, 8(gn)) for alln > 1 and
if the sequence {1, }5°, converges weakly to a measure p € M(J), then p € 3(g,, s(g)).

Proof. Since €1 is weakly compact, p € 2. Since g ~ (,
A :=sup{g(z) — ((2)]| : z € J} < +o0.

Fix an arbitrary s > A+ 1. Take an arbitrary n > 1 so large, say n > ¢, that p:(g,,9) < 1/2.
Then for every z € g7!((—o00, —s)) we get that

90(2) < (=) + 51 +1CD) < g=) + 5 (1+1g()] +4) = g(=) + 5 (14 A~ g(2))
1

“(1+A—s)<0. (5.4)

219(2)+1(1+A)<—ls+1(1+A):2

2 2 2 2
Hence, for all n > ¢, we obtain

/gl([_87+oo))g L Gndp (9n)
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Since the set g7!([—s,+00)) is compact (consequently the sequence {g,}>, converges to
g uniformly on g~!([—s,+00))) and since the sequence {u,}°, converges weakly to u, we
therefore get

/ . : gdp > limsup Gndpt, > limsup s(g,) > s(g), (5.5)
g~ 1([~s,+o0

n—oo Jg=1([—s,+00)) n—o0

where writing the last inequality sign we have used Lemma 5.6. Since {g~*([—n, +00))}>2,
is an ascending sequence of Borel sets and since U2, g~ ([—n, +0o0)) = J, applying (5.5), we
get

/ gdp = lim / gdp > s(g).
700 Jgm1([=n,+00))
Hence p € ¥(g,€, s(g)) and we are done.

As a fact complementary to Lemma 5.7 we shall prove the following.

Lemma 5.8. Let (J,(,Q2) be a mazimizing triple. Suppose that g, g, € [(], n > 1, and that
limy, . gn = g with respect to the metric p. on [C]. If pn € X(gn, 2, 5(gn)) for alln > 1, then
the sequence {,}5° is tight.

Proof. Fix € > 0. Let A be the proof of Lemma 5.7. Fix then s > A 4 1 so large that

1 s 4 e sup(g)+1

Rl R M CORDES e

. (5.6)

=~

Follow the proof of Lemma 5.7 verbatime from the beginning up to (5.4) included. Since
tn € 3(gn, 2, 8(gy)) for all n > 1 and using the first inequality in (5.6) along with (5.4), we
get for all n > ¢ that

S -1
(o o) > [
4 ( (( ))) 971 ((—00,-9))

= gndlun _/ gnd,un = S\ 9n _/ gnd,un
/J g~ ([~s,+00)) ( ) g~ ([~s,+00))

Hence

) 15(g,) 4
n ! -0, =S < - T _/ ”d " >
(97 D)<= g lsstoe) o

It follows from Lemma 5.6 that for all n > 1 large enough, say n > ¢; > ¢, we have
s(gn) > s(g) — 1. Since g~!([—s,+00)) is a compact set, the sequence {g,}2, converges to
g uniformly on g~'([—s, +00)). In consequence |g,(z) — g(z)| < 1 for all z € g~!([—s, +00))
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and all n > 1 large enough, say n > go > ¢;. Therefore, we get from (5.7) that for all n > ¢

(g (o0, =s) < =D ZD L2 up()+ D
= DD | () + )57 (5 +00))
_A(s(g9) — 1)

< + 4max{0, s~ (sup(g) + 1)}

S

Now, by the last two inequalities from (5.6), we get for all n > ¢, that p, (g’l((—oo, —s))) <e.

Since J \ g7 ((—o00,—5)) = g ([—s,+00)) is a compact set, the tightness of the sequnce
{pn}oo is proved.

6. UNIQUENESS OF MAXIMIZING MEASURES

We say that a maximizing triple (J,(,2) is uniquely maximizing if € is a convex subset of
M(J). The main result of this section is the following theorem motivated by [4] and [2].

Theorem 6.1. Let (J,(,Q) be a uniquely maximizing triple. Suppose that (H, ||| - |||) s
Banach space contained densly in the normed space (Cy(J), || - ||¢c) and that the inclusion map
from (H, ||| - ||]) to (Co(J), || - |l¢) is continuous. Then there exists a dense G subset G of
C+H C [¢] (with the topology on ¢ + H induced by the metric py(¢,¥) = ||| — ¢|||) such

that each function in G has a unique mazimizing measure in §2.

Proof. Put
He=(C+H.
Since H is a dense subset of Cy(J), there exists by Proposition 5.1 a sequence {¢,}5°, C H

forming a dense subset of Cy(J). Let d¢ be the metric on X (¢, 2, —00) (see Lemma 5.2)
given by (5.3) with the above sequence {¢,}> ;. For every € > 0 put

Re = {¢ € [(] : diamg, (2(¢, 2, 5(¢))) < e}

We shall prove that R. is an open subset of [(] and . N H, is dense in H, (with respect to
the metric py). Suppose on the contrary that IR. is not open. Then there exist 1R, and a
sequence {¥,}>, of functions from [(] such that lim, .1, =1 and ¢, ¢ R, for all n > 1.
Hence

diamg, (S(vn, O, 5(6n))) > €

for all n > 1. It therefore follows from Corollary 5.5(d) that for every n > 1 there are two
measures iV, € (¢, Q, s(1,)) such that

de(pin, vn) > €. (6.1)
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In view of Lemma 5.8 and Prokhorov’s Theorem, we may assume without loss of generality
that both sequences {p,}22, and {v,}5°, converge weakly respectively to the measures pu
and v in M(J). Since Q is weakly closed, pu,v € Q. Now it follows from Lemma 5.7 that
p,v € 3(1,Q, s(1)), whereas using (6.1), we conclude from Corollary 5.5(b) (the set {u, v} U

{#n, v = m > 1} is weakly compact) that d¢(u,v) > €. But diamg, (Z(w,ﬂ,s(w))) < () as
¢ € R.. This contradiction finishes the proof that R, is an open subset of [(].

Now let us demonstrate that the set %, NH¢ is dense in H¢. In order to do it fix ¢ € ‘H,. For
every k > 1 consider the continuous map 7 : ¥(¢, Q, —00) — IR* defined by the formula

= ([ dudu, [ ot [ ondu).

diamy, (' (w)) < 27F (6.2)

It follows from (5.3) that

for all w € IR*. Fix n > 1 so large that
27" < e, (6.3)

Since Q) is convex, so is the set (¢, Q, s(¢)). By Corollary 5.5(d) this is also a compact
subset of 3 ((, 2, —00). Hence 7, (Z(w, Q, s(w))) is a convex compact subset of IR". Thus by

Straszewicz’s Theorem this set has a strictly extreme point, i.e. a point p™ = (p1,pa,... ,Pn) €
T (E(@/}, Q, 5(¢))) C IR along with a vector (ay, as, ... ,a,) € IR™ such that
D oapi > Y aig; (6.4)
i=1 i=1

for all (¢1,q2,... ,qn) € WH(Z(w,Q, s(w))) Since all the functions ¢;, j > 1, are in Cy(J),

6= a6 € CulJ)
Put
(9) = supd [ odu: p € S, sw)} and £(9) = {n € T, 2s(v)) : [ o= 5(9))
Then using (6.4) we see that X(¢) C 7 (p™). It therefore follows from (6.2) and (6.3) that
diamy, (3(¢)) < e. (6.5)
We shall show that for all ¢ € (0, 1) small enough
Y=Y +tp € RN He.

Indeed, for allt € R, Yy — (= (v — () +tp € H (¢ — ( € H since ¢ € H, and t¢ € H since
H is linear and {¢;}52, C H). We are therefore left to show that v € R. for all £ € (0,1)
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small enough. In view of (6.5) there exists an open set U C ¥+ ((, 2, —o0) such that

X(¢p) CcU (6.6)
and
diamy (U) < e. (6.7)
We shall show that for all ¢ € (0, 1) small enough

(4, Q,5(vr)) C UL (6.8)

Indeed, suppose on the contrary that there exists a decreasing to 0 sequence {t;}32, C (0,1)
such that E<wtk, Q, s(wtk)) is not contained in U for any k > 1. This means that for every
k > 1 there exists a measure

s € B (v, @, 5(40,)) \ U. (6.9)

Since ¢ € Cy(J), the sequence {1y, }72, converges to ¢ in the standard supremum metric on
[(], and consequently, limy, ... o, (1%, @Z)) = 0. Hence, applying Lemma 5.8 and Prokhorov’s
Theorem, and passing to a subsequence if necessary, we may assume without loss of gener-

ality that the sequence {u;}32, converges weakly to a measure p € . Making now use of
Lemma 5.7, Corollary 5.5(a) and (6.9), we conclude that

e S(¥,Qs(v) \ U, (6.10)

Now take an arbitrary measure v € Z<¢, Q, s(@/))). Then for every £ > 1 we have that

[+t [ odv = [woav < [ v dm = [vdue+ti [ du < [wdv+ s [ odp.

Thus, [¢dv < [¢dug. Since the sequence {pux}2, converges weakly to p and since ¢ €
Cy(J), we therefore get that [¢dv < [ ¢dpu. This means that u € 3(¢). Along with (6.6)
and (6.10) gives a contradiction and (6.8) is established. This formula and (6.7) show that
diamg, (Z (d)tk, Q, s(@/}tk))) < e for all t € (0,1) sufficiently small. Consequently ¢, € R. N H
for all t € (0,1) sufficiently small. Since 1y — ¥ = t¢ € H, we see that py (i, ) = |||[té]]| =
t||¢]|| — 0, when ¢ \, 0. The proof that R, N H, is dense in H, with respect to the topology
induced by the metric py is finished. Putting G = N;Z,; 1/, N'H, completes the proof of the
whole theorem. ®

As an immediate consequence of this theorem we get the following.

Corollary 6.2. If (J,(, Q) is a uniquely mazimizing triple, then there ezists a dense G5 subset
G of [€] (I¢] endowed with the complete supremum metric) such that each function ¢ € G has

a unique maximizing measure in 2 (Z(gb, Q, s(¢)) is a singleton).
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We now describe large classes of Banach spaces densly contained in C,(J). Indeed, given
a€ (0,1, 6> 0and ¢ € Cyp(J) let

Va(@) = inf{L >0 |d(y) — ¢(z)| < Lp™(2,y) Vees Vyen@s) }-
Let

H, = {¢ € Cp(J) : v4(0) < 00}. (6.11)

Obviously H, is a linear subspace of Cy(.J) and becomes a banach space when endowed with
the norm || ||, determined by the formula

1€lla = 1|@]oc + val®)-

Observe that the set H, does not depend on § and all norms defined with various ds induce
the same topology on H,. Since H, is a dense subset of Cy(.J) continuously (because of (6.11)
embedded in Cy(J), as an immediate consequence of Theorem 6.1, we get the following.

Corollary 6.3. If (J,(,Q) is a uniquely mazimizing triple, then there exists a dense Gs
subset G, of ¢ + Hy such that each function ¢ € G has a unique mazimizing measure in )

(Z(¢, Q, 5(¢)) is a singleton,).

7. DYNAMICAL APPLICATIONS

Suppose that ( : J — IR is an escaping to —oo continuous function and that T': J — J
is a continuous mapping. Then Mrp, the set of all Borel probability T-ivariant measures on
J is convex and weakly closed in M (J). Suppose that My is (-acceptable, i.e. that [{du €
(—00, +00) for some p € My. The triple (J, T, () is then called dynamically maximizable and
each maximizing measure of { with respect to My is called dynamically maximizing. Notice
that this holds for instance if for instance My contains at least one measure with compact
support; this in turn hold for instance if T" has at least one periodic orbit. As immediate
consequences of Corollary 4.2, Theorem 6.1, Corollary 6.2 and Corollary 6.3, we respectively
get the following.

Corollary 7.1. Suppose that ¢ : J — IR is an escaping to —oo continuous function and that
T:J — Jis a continuous mapping. If the triple (J,T,() is dynamically mazimizable, then
has at least one dynamically mazrimizing measure.

Corollary 7.2. Suppose that ¢ : J — IR is an escaping to —oo continuous function and that
T :J — Jis a continuous mapping. Suppose that (H,|||-|||) is Banach space contained densly
in the Banach space (Cy(J), ||-||¢) and that the inclusion map from (H,|||-||]) to (Co(J), ||]l¢)
is continuous. If the triple (J,T,() is dynamically maximizable, then there exists a dense Gy
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subset G of (+H C [C] (with the topology on (+H induced by the metric py(p,v) = |||v—¢l|])
such that each function in G has a unique dynamically maximizing measure.

Corollary 7.3. If (J,T,() is a dynamically mazimizing triple, then there exists a dense Gy
subset G of [C] (I¢] endowed with the complete supremum metric) such that each function in
G has a unique dynamically mazximizing measure.

Corollary 7.4. Suppose that ¢ : J — IR is an escaping to —oo continuous function and
that T : J — J is a continuous mapping. If the triple (J,T,C) is dynamically mazimizable,
then there exists a dense Gs subset G, of ¢ + H, such that each function in G has a unique
dynamically maximizing measure.

All the corollaries listed above apply to so big aboundance of cases that it is virtually im-
possible to list some special ones. We will however describe in the next section one large
class of dynamical systems with non-compact phase space for which all the corollaries estab-
lished in this section are true and which will be investigated in greater detail and from wider
perspectives in the next section.

8. THE EXPONENTIAL FAMILY

We first consider the family {fy : € — C}eq g0y of entire maps of the form

fr(z) = Aexp(2).
The Fatou set of f, consists of those points z € € that admit an open neighbourhood U,
such that the family {fV|y}52, of iterates of f, restricted to U is normal. The Julia set J)(f)
is defined to be the complement of the Fatou set. Since the map f) is periodic with period
27i, we consider it rather on the cylinder than on €. So, let @) be the quotient space (the
cylinder),
Q=0 ~,

where 21 ~ 2o if and only if z; — 29 = 2kme for some k € Z. Let 7 : €' — @ be the natural
projection. Since the map 7o fy : €' — (@ is constant on equivalence classes of relation ~, it
canonically induces a conformal map

F:Q— Q.

The map F) : Q — @ will be the main object of our considerations. The Julia set of F) is
defined to be

J(F\) = m(J(fr))- (8.1)
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and

R(J(Fy)) = J(F) = FTHI(F)).
The cylinder @ is canonically endowed with a Euclidean metric which without confusion will
be denoted by the same symbol |w — z| for all z,w € P. For ever x € IR we set

Q. ={z€Q:Rez<z}and J(F), ={z € J(F): Rez < z}.

We have thoroughly studied the fractal and dynamical properties of such maps in [8] and [9].
The papers [9] and [10] develop the appropriate versions of thermodynamic formalism and
it is evident from them that the right class of potentials to deal with is formed by Hélder
continuous functions (on the Julia set) lying within a bounded distance from the functions of
the form z — —kRez (k > 0). Here is the spot where we meet the content of the previous
section. Indeed, notice that a continuous function ¢ : J(F\) — IR is escaping to infinity if
and only if

Rell—rg—oo C(Z) -

Since the Julia set J(F)) is equal to the closure of its periodic points, we see that the triple
(J(F\), Fx, ¢) (where ( is escaping to infinity) is dynamically maximizable and we may there-
fore formulate the following.

Remark 8.1. All the conclusions of Corollaries 7.1-7.4 hold with the triple (J, T, () replaced
by (‘](F)\)a F)\a C)

From now on we assume that our exponential mapping f : €'— 'is hyperbolic which means
that f has an attracting periodic orbit. We then analyze in greater detail the dynamically
maximizing measures of Holder continuous functions. We single out from them the class of
0T -tame functions and using the ideas from thermodynamic formalism, we demonstrate the
existence of maximizing measures with compact support for such functions. As an outcome
of our method of the proof, we provide a more constructive way of producing maximizing
measures for 0-tame function. We start with the following two auxiliary results.

Lemma 8.2. If i is a Borel probability measure on the real line IR, then for every é > 0,
every o > 0, and every integer n € Z there exists x,, € [on,0(n + 1)) such that

+oco oo

>N u([xn —e % 1, + e_o‘k]) < 00.

n=—00 k=0
Proof. For every x € IR and every k € Z write
Lp=[v—e ™ z+e )
and note that [*2° (I, x)dx = 2e7°%. Let

+oo oo

g(x) = D> D> plLatsnn)-

n=—oo k=0
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Then

o 490 h(n+l)
/ dx—ZZ/ ykdy—Z/ ykdy—ZQe < +00.
k=0n=—00
Hence there is = € (0,0) such that g(z) < 400, and taking x,, = x + dn completes the proof.
]

Lemma 8.3. If 1 is a Borel probability measure on the cylinder @, then for every § > 0 there
exists a partition o of QQ by rectangles with all sides of length < 0 parallel to the coordinate
axes such that for every g > 0

ZZM( (0A, e ”))<oo.

n=0 A€a

Proof. Let p; : Q — IR be the orthogonal projection onto the x-axis and let py : Q — IR

be the orthogonal projection onto the circle IR/27Z. In view of Lemma 8.2 there are points

[z, € [gn, %(n—i— 1)} CR,neZ yi <y <...<y, € R/2nZ such that |y;41 — y;| < ¢ and

—+oc0o [ee) q oo
> S popr(fra — e my + e ™)) <coand J2 3" popy! ([ — ey + e < oo
00 b j=1k=0 (8.2)

Let o be the partition formed by all the rectangles [, Zni1] X [Uj, Yjt1(modq)] C @, 1 € Z,
7=12...,q. Then

_OO q{xn} x SHU (IR x {y;})
and

B(da,e™™) = (Uan, xs) (UBxByj, )).

n=-—00 j=1

Hence, due to (8.2)

Z > ,u( (0A, e~ ) Z u( (2, e7PF) x Sl) +Z,u(ﬂ% X B(yj,e’ﬂk))

k=0 Aca n=-—00 j=1
Z o py ( (n, € ﬁk))+zq:uop21(3(y],e ﬁk)) < 00
n=-—oo 7j=1

We are done. &

We now pass to deal directly with Holder continuous functions. Let

§ = %min{%,dist(J(F), {F"(m(0)) :n > O})}
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Since the map f : J(f) — J(f) is hyperbolic, we see that § > 0. For every n > 1 and every
v € J(F) the map
FE":B(F"(v),20) — Q
is then defined to be the holomorphic inverse branch of F™ on B(F™(v),2d) sending F"(v) to
v. It was proven in [9] that there exist two constants C' > 1 and x > 0 such that
(EY ()] < O (83

forall n >0, all v € J(F) and all z € B(F™(v),d). Let ¢ be a real-valued Holder continuous
function defined on some Euclidean R-neighbourhood of the Julia set J(F') C @, R € (0,9/2).
Holder continuous means here that

J(a>0) Vreo,r) Fm, >0 if |y — x| <, then |o(y) — o(x)| < H,yly — x|

Let Re : @ — IR be the real part function (projection onto the real axis).

Definition 8.4. A Holder continuous function ¢ : J(F) — IR is called k-tame, k € IR, if
¢ € [—kRe], where Re : Q — IR is the function ascribing to each point in the cylinder Q its
real part. This function is called 0% -tame if kK > 0 and 1" -tame if k > 1.

For every function g : J(F') — IR and every n > 1 let

n—1

Sng:ZgOFj'

5=0
The following three basic facts have been essentially proved proved in [9] for the special case
#(z) = —kRez, k > 1. The complete proofs in the case of an arbitrary 17-tame function
requires only minor straightforward modifications and can be found in [10]).

Theorem 8.5. Let ¢ be 1T -tame. If f : @ — @ is hyperbolic, then For every z € J(F) the
following limit exists and is independent of the point z.

P(¢) = lim llog > exp(Sn¢(x)).

n—oo
n zeEF~(2)

The number P(¢) is called the topological pressure of the potential ¢

Theorem 8.6. If f : € — @ is hyperbolic and ¢ : J(F) — IR is a 1" -tame potential, then
there exists a unique Borel probability measure my on J(F') such that

m¢(Fv_”(B(z,5))) = /B(z,é) exp(Snng(Fv_”(w)) - P(¢)n)dm¢(w)
foralln>1, all z € J(F) and all v € F7"(z).
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Theorem 8.7. If f : @' —  is hyperbolic and ¢ : J(F) — IR is a 1*-tame potential, then
there exists a unique Borel probability F'-invariant measure p, absolutely continuous with
respect to my. In addition g is ergodic, equivalent to my and the Radon-Nikodym derivative
Y = dug/dmg has a continuous everywhere (on J(F)) positive and uniformly bounded version.

For every Borel probability F-invariant measure p on J(F) let h,, denote the measure-theoretic
entropy of the measure p with respect to the dynamical system F : J(F') — J(F'). Our first
result, crucial for investigation of dynamically maximizing measures of 0"-tame functions and
interesting on its own is this.

Theorem 8.8. If f : @'— ' is hyperbolic and ¢ : J(F) — IR is a 17 -tame potential, then the
invariant measure iy is an equilibrium state of the potential ¢, that is

P(¢) = sup{h,(F) + /¢du}

where the supremum s taken over all Borel probability F'-invariant ergodic measures p with
J odp > —o0, and

P(9) =y, + [ ddus

Proof. We shall show first that if x4 is a Borel probability F-invariant ergodic measure on
J(F) with [ ¢dp > —oo, then

P(¢) = by, + [ odp.

Let a be the partition constructed in Lemma 8.3 with diameter < §. We shall demonstrate
that there exists a Borel set Z C J(F') such that u(Z) =1 and

pg(an () < plan(z)) (8.4)

for all x € Z and all n > 1 large enough (depending on z). If x and p4 are not mutually
singular, then p = pg4 since both measures are ergodic, and (8.4) becomes obvious. So, we
may assume that ;o and pg are mutually singular. This means that there exists a Borel set
Y C J(F') such that p14(Y) = 0 and pu(Y) = 1. Seeking contradiction suppose now that there
exists a compact set S C Y with the following two properties.

(a) pu(S) > 0.

(b) For every = € S there exists an unbounded increasing sequence {n;(z)}52, such that
o (O, (@) () > g, (@) (7))
for all j > 1.
Since the measure p, is regular and pg(S) = 0, there exists € > 0 such that p,(B(S,¢)) <
w(S)/2. Since for every x € J(F) and every n > 0, a,(z) C F,"(B(F"(z),d)), looking at
(8.3) we see that
lim diam(a,(x)) = 0.

n—oo
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Fixe > 0. For every z € S there thus exists j(z) > 1 such that diam (oznj(x)(x)) < e. Since any

two elements of the family {anj - (x)} g Are either disjoint or one is contained in the other,
T

we can choose countably many points {z;}32; C S such that all the sets Ay = an,, \(zx),

k > 1, are mutually disjoint and Uy>; A O S. Using the property (b) we then get

o0 o0 o0 [e.e] 1
p(S) < p (U Ak) = > u(Ar) <Y pe(Ax) = pg (U Ak:) < up(B(S,¢)) < 5#(5)-
k=1 k=1 k=1 k=1

This contradiction finishes the proof of (8.4). In view of Lemma 8.3 we get for every 8 > 0
that

ZZM< ( 8Ae_ﬁ”)) Zz,u( (0A,e” ”))<oo.

n=1A€a

Therefore j(Z;) = 1, where Z; is the set of all those z € Z that F"(2) € B(0A,e ") for
finitely many n’s only. Fix z € Z; and let ¢ > 1 be such that F"(z) ¢ B(0A,e "") for
all n > ¢. For every k € {0,1,2,...,n}, put F. % := F.F Kz (50, F~* is the branch of
F~* sending the point F"(z) back th F"7*(z)). Let p > 0 be an arbitrary real number
such that C~le " < ¢ #=P)  This equivalently means that logC' + kp > [Bn — [Bp or

k+ B)p > fn —log C, and finally this means that p > logC " Qp, putting
+ﬂ

k40"
g
p=r </~i+ﬁ

we see that p satisfies the required inequality; in fact

C—le—nk < e—,@(n—k)

n —

for all k > p. This implies that a(F"%(z2)) D F* (B(F"(z), 6)) for all p < k < n — ¢, since,

by (8.3), the preimage F~*B(F"(z),d) is contained in the ball B(F"*(z), Ce™"*) Hence
F= k0 (o(Fr4(2))) D Fy 080 o FF(B(F™(2),0)) = Fo "9 (B(F"(2),0)),

*

where F,("=k=0) . B(F"~*(z),26) — C'is the holomorphic inverse branch of F"~*¥~7 sending
F"*(z) to F9(z). Thus,

Ona-pl2) = () P00 (a4 (2)) 5 F200 (B(P(2),5)).

k=p

Hence, utilizing Theorem 8.6 and Theorem 8.7, we obtain
po(n-gp(2)) = 1o (PO (B(F"(2), ) )
= G(F(2)) exp(Sn-g@(F(2)) = P(o)n)mg (B(F"(2),0))
= exp(8,0(2) = P(&)n)my(B(F"(2),9)),
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where ¢ = dpu,/dmg and the comparability constant, call it Cy appearing in the above formula
depends on z but is independent of n. Consequently

%mawwnHwnﬁQ%%@+%&ma—H@+%mdm4mwwman.@@

In view of classical Birkhoft’s ergodic theorem and the Breiman-McMillan-Shanon theorem
(see [6], [11], comp. [7]) there exists an F-invariant Borel set Z, C Z; such that u(Zy) = 1,
and for all z € Z,

- n 1 .1
lim inf Re(F"(2)) < oo, lim ﬁSnng(z) = /¢du,girgoﬁlog<u(an(z))) = —h,.

n—oo

(8.6)

Fix z € Z,. There thus exists an unbounded increasing sequence {n;}32, of positive integers
such that Re(F"i(z)) < M for some M > 0 and all j > 1. Hence, there exists 7' > 0 such
that m¢<B(F"1(2),5)) > T for all j > 1. It therefore follows from (8.5) and (8.6) that for
every z € Zo,

lim inf 1 log (u¢ (OCn]-—q—pn]. (Fq(z)))) > /¢du —P(9).

Jj—oo n;
Combining this along with (8.4) and the last part of (8.6), we get

—h, > lim inf (L (o (F%z)))))

J=ee Ny —q = Pn; TNy

(=) (f o= ri@),

But it follows from the definition of the sequence {p,}5°, that

. n .. 1 ) 1 1 k+ [
liminf ——— =liminf | ————— | = lim = = .
n—oo M — g — Py, n—00 1— % — p_: n—oo \ | — p_: 1 — —nﬁﬁ K

Hence
K

K+

[ édu = P(o) < -1,
Letting now 3 ™\, 0, we finally obtain that
P(¢) = by, + [ odp.

We shall now prove the easier part of our theorem, that

P(9) <y, + [ dds

Indeed, let a be the same partition as in the first part of the proof. Since F restricted to each
atom of the partition « is 1-to-1, it follows that a,(z) C F, " (B(F”(a:), 5)) for all z € J(F)
and all n > 0. Applying Birkhoft’s ergodic theorem and the Breiman-McMillan-Shanon
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theorem for the F-invariant measure ji4 and utilizing Theorem 8.6 along with Theorem 8.7,
we therefore get for pgy-a.e. x € J(F) that

s, < Timinf * log o (F " (BP(2),6))) < liminf - (log(26(2) + 5,6(x) — P(6)n)

1
— Jim = S,0(x) = P(6) = [ édus — P(9)
Thus P(¢) < hy, + [ ¢dpy and we are done. B

Since ¢ is 1T-tame there exists a unique x > 1 such that ¢ is sK-tame. Our aim is to show
that the family {jus}e>1 is tight. This requires several lemmas. We start with the following.

Lemma 8.9. If f: €' —  is hyperbolic and ¢ : J(F) — IR is a 17 -tame potential, then
X = sup{| /¢dut¢\} < 0.
t>1

Proof. It has been proved in [10] that [ ¢dus = P'(t¢) and that the function ¢ — P(t¢)
is convex. The latter means that the function t — P’(¢¢) is non-decreasing. Hence P'(t¢) >
P’(¢) for every t > 1, and consequently [ ¢djis > [ ¢dps > —oo for allt > 1. The observation
that sup{¢(z) : z € J(F)} < 400 finishes therefore the proof. B

In the proofs of the following two lemmas we occasionally use some results from [10]. They
always correspond to analogous results from [9] and the difference between [9] and [10] is that
in [9] the potentials of the form const+¢Rez are considered, while [10] deals with more general
potentials tRez plus a bounded Holder continuous function. The estimates we need here for
this more general class of potentials are straightforward modifications of the corresponding
estimates from [9)].

Lemma 8.10. If f : @' — ' is hyperbolic and ¢ : J(F) — IR is a 11 -tame potential, then the
family {muy }1>1 is tight and its every limit measure (ast — +00) has a compact support.

Proof. By Theorem 8.8 and Lemma 8.9,

P(tg) > —xt (8.7
for all t > 1. Corollary 3.13 from [10] applied to the potential t¢ states that
M (QS) < 404 A" (tk — 1) exp (tA¢ — P(tqb))eM(l_t“)e(l_m)”, (8.8)

where Cy > 0 is an absolute constant and Ay = ||¢ + kRe||~. (Recall that Q% = {z € @ :
Rez > n}).This corollary says in fact that the above estimate holds for for all n > M(t),
where M (t) can be computed precisely:

1

M(t) = (2Ca|A[" exp(tA, — P(t)) (tr — 1)) ™7,
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where Cy > 0 is an absolute constant (compare Proposition 3.8 and Corollary 3.9 in [9], where
a slightly simpler case ¢(z) = —Rez is considered). We therefore have

( 20, )— <tA¢—P(t¢+tnlog|/\|)>
exp

lim sup M (t) = lim sup

t /+oo t /+oo Kkt —1 Kkt —1
1
205 \ w1 tA t + trlog |\
§limsup< 2 > exp o Xt + trlog|])
t /+oo Kkt —1 Kkt —1
A log |\
:exp< ¢+x—i—/€og| |><oo
K
Combining this and (8.8 we see that there exists M > 0 such that for all ¢ > 1 and alln > M
c 404 (1—rkt)n _
M (@) < ——€ exp(tA¢ P(t¢) + trlog |)\|)

So, employing (8.7), we get that

4C
ms(Q5) < p” _41 exp((l — kt)n + (Ap + x + klog |/\|)t)

Fix ng > M so large that (kt — 1)ng > (A, + x + klog |A|)t for every ¢ > 1. Then for every
n > ng and every t > 1, we get that

2C

41 exp((l — kt)(n — no)) < ¢

41 exp((l —K)(n — no)) (8.9)

mie(Qy,) <

Hence

lim (Stgllb{mw(QZ)}) =0

n—~oo

and since each set (), is compact, the proof of the tightness of the family {n,}+>1 is complete.
It also follows from (8.9) that for every ¢ > 1,

4C
41 exp(l — kt).

My (Qrgi1) < -

This implies that lim . o myg(Q5 1) = 0 and consequently, m(Qn,+1) = 1 for every limit
measure m of the family {my,}i>1. Since Q11 is a compact set, we are therefore done.

For every ¢t > 1 let ¢y = djuss/dmys. We will also need the following

Lemma 8.11. If f : @ — @ is hyperbolic and ¢ : J(F) — @' is a 1T -tame potential, then
there exists x > 1 such that

sup sup {¢(w)} < 1.
t>1 weJ(F)s
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Proof. Fix w € J(F)§, i.e Rew > 1. Treating w as an element of the strip {z € €': —7 <
Imz < 7}, let for every k € Z, the point w, € @Q be the only element of f~(w + 27ik)
(we treat here the function f as defined on the cylinder @) and taking values in (.) Let
ﬁw : C, — ()} be the normalized Perron-Frobenius operator induced by the potential t¢. It
is given by the formula

o0

ﬁtd)(g)(z) = ¢ P9 Z etd’(w’“)g(wk). (8.10)

k=—o00

It has been proven in [10] (following the proof of Lemma 3.4 in [9]) that there exists a function
Ky : IR — [0,00) such that for all n > 0, all y large enough and all ¢ > 1 we have

An Ki(y)
wll) < Q)

It follows from (8.9) that ms(Q,) > 1/2 for all y large enough and all ¢ > 1. Hence, there
exists y > 1 (in fact all y large enough are good) such that

(1) < 2K (y) (8.11)

for all n > 0 and all ¢ > 1. Since ¢ is a 1*-tame function, there is a unique x > 1 such that
¢ is k-tame. Recall that A, = ||¢ + kRe||w. It is straightforward to calculate that

Rewlfmt

Z etPwr) < QetA¢(|)\|)’“ Z(Rew + 27T]€)_Rt < 2€tA¢(|)‘|)nt F—1
Kt —

k=—0o0 k=0

In particular if x > 1 and w € J(F)S, then

0o 11—kt

Z etd)(wk) < 2€tA¢(’)\Dnt z
- Kkt —1

k=—o0

It therefore follows from (8.7) and (8.10) that
. xl—fet

<
kt—1 " kt—1

Li(1)(w) < 28Xt (|A|) O AR (| X |yt gl =rt (8.12)

Since

lim sup log< e(X+A¢)t(|/\|)f€tm1—nt> _

t—4o00

Kkt —1

2
= lim sup <log <m> + (x + Ay)t + rlog(|A|)t + log x — Kt log .r> = —00

t——+o0

if only xlogx > x + Ay + klog(2|)\|), we therefore see from (8.12) that if x > y > 1 is large
enough, then

Lip(D)(w) < (2K5(y) (8.13)
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for all ¢ > 1. Applying the operator ﬁw to inequality (8.11), utilizing its monotonicity
(following from its positivity, which in turn follows immediately from (8.10)), and using
(8.13), we get

L (M)(w) < L1 (2K5(0)1 ) (w) = 2K (1) Lio(1) (w) <1

It therefore follows from the results proven in [10] (comp. Theorem 4.4 in [9]) that ¢ (w) <1
forallt >1and allw € J(F)S. ®

Combining this lemma and Lemma 8.10, we get the following.

Proposition 8.12. If f : @ — ' is hyperbolic and ¢ : J(F) — IR is a 11 -tame potential, then
the family {jg}e>1 is tight and its every limit measure (ast — +00) has a compact support.

It therefore follows from Prokhorov’s theorem that the set M, of all weak limit points of the
family {pu4}e>1 (as ¢ — +00) is non-empty. The significance of the set M is explained by
the following main result of this section.

Theorem 8.13. If f : @ — @ is hyperbolic and ¢ : J(F) — IR is a 1T -tame potential, then
the non-empty set My is contained in the set of all dynamicall mazimizing measures for ¢.
In particular this latter set contains measures with compact supports.

Proof. In view of Proposition 8.12 and the paragraph following it, we are left to prove that
each measure in M, is maximizing for the function ¢. So, fix a measure u € My. There
then exists an increasing sequence {t,}2°; diverging to +oo such that the sequence {fu, 6},
converges weakly to pu. We shall show first that

limsup | ¢dp, s < /gbdu. (8.14)
Indeed, let ¢ \, ¢ be a sequence of bounded continuous functions converging pointwise to
to ¢ (for example ¢, = max{¢, —k}). Fix any number T" > [ ¢du (note that we have not
ruled out the possibility that [ ¢du = —oo. It follows from Lebesgue’s monotone convergence
theorem that T' > [ ¢rdu for all £ > 1 large enough. Fix one such k. Fix also ¢ > 0. Since
¢k is a bounded continuous function and since the sequence {1,152, converges weakly to p,
we have [ ¢rdp > [ ¢rdpe,, — € for all n > 1 large enough. But [ ¢rdiis, s > [ ¢dp, s since
¢r > ¢. Combining all these inequalities together, we get that

T> [ondp> [ ondiug—=> [ odun,s—=

for all n > 1 large enough. Hence limsup,,_, . [ ¢du,s < T + €, and letting € \, 0 and
T\, [ ¢du, formula (8.14) follows. We have already established in the proof of Lemma 8.9
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that the function ¢ — P’(t¢) is non-decreasing. In particular, the limit lim; ;. P'(t¢) exists,
and looking at (8.14), we see that
lim P'(t) < / iy, (8.15)

t,/+o0

Seeking contradiction suppose now that p is not a maximizing measure for the function ¢.
Then there exists a Borel probability F-invariant measure v on J(F) such that [ ¢dv > [ ¢dpu.
In particular [ ¢dv is a finite number and fix any € IR such that [ ¢du < R < [ ¢dv. Since
P(¢) < oo, it therefore follows from Theorem 8.8 that h,(F') < co. So, we may consider the
linear function I, (t) = h,(F) 4+t [ ¢dv. It then follows from (8.15) that I(t) = [ ¢dv > R >
P'(t¢p) for all t > 1 large enough. Consequently [, (t) > P(t¢) for all ¢ > 1 sufficiently large.
But this contradicts Theorem 8.8 and finishes the proof. B

Corollary 8.14. If f : @' — @ is hyperbolic and ¢ : J(F) — IR is a 0T -tame potential, then
the set of all mazimizing measures contains at least one measure with compact support.

Proof. The function ¢ is k-tame with some x > 0. So, the function %gzﬁ is 2-tame, and
since both functions ¢ and %gzﬁ have the same set of maximizing measures, an application of
Theorem 8.13 completes the proof. B

Since —log [F'(z)| = —log|\| + log|e*| = —log|A| + Rez, the function —log|F”| is 1-tame
and consequently, 0t-tame. Therefore, the following result follows immediately from Theo-
rem 8.13.

Corollary 8.15. There exists a Borel probability F-invariant measure with p with compact
support that minimizes the Lyapunov exponent x, = [log|F'|d.
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