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Abstract. We prove the existence and uniqueness of maximizing measures for various
classes of continuous integrands on metrizable (non-compact) spaces and close subsets of
Borel probability measures. We apply these results to various dynamical contexts, especially
to hyperbolic mappings of the form fλ(z) = λez , λ �= 0, and associated with them (as in [8]
and [9]) canonical maps Fλ of an infinite cylinder. It is then shown that for all hyperbolic
maps Fλ and all 0+-potentials φ, the set of (weak) limit points of equilibrium states of of
potentials tφ, t ↗ +∞, is non-empty and consists of dynamically maximizing measures with
compact supports.

1. Introduction

In this paper we deal with the general problem of the existence and uniqueness of measures
maximizing integrals of certain continuous functions ζ , which we call escaping to −∞, defined
on some metrizibale spaces. The significance of such measures in a dynamical context is well
explained in [2], [4] and [5]. The setting of the first part of our paper does not require any dy-
namics. In fact we fix a closed set Ω of Borel probability measures (note that if the referenced
metrizable space J is not compact then such set does not have to be compact either) and
we look for measures in Ω maximizing integrals of ζ . Obviously, if the space J is compact,
then maximizing measures always exist. In a non-compact case this problem becomes critical.
We solve it positively in Section 4 for all continuous escaping to −∞ potentials under mild
assumptions on the set Ω of considered measures. The next section, Section 5 contains aux-
iliary, though interesting themselves results from topology and measure theory. In Section 6
we ask the question of uniqueness of maximizing measures of potentials escaping to −∞.
This is a delicate problem even in the best understood dynamical context case of subshifts
of finite type since one can very easily construct potentials depending only on finitely many
coordinates for which this uniqueness fails. Developing the approach from [4] and [2], which
in our case meets different type of technical problems, we answer this question positively for
Gδ dense subsets in some naturally emerging metric subspaces of the space of all continuous
functions. The next section, Section 7 contains straightforward dynamical consequences of
the general results proved in the previous sections. In the last section, Section 8, dealing,
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except at its very beginning, exclusively with hyperbolic exponential functions and a natural
subclass (1+-tame) of Hölder continuous potentials, we undertake an approach stemming from
thermodynamic formalism. First we show that the Gibbs measures μφ of such potentials φ
proven to exist in [10] (comp. [9] for the class of potentials of the form z �→ −tRez (t > 1)
turn out to be equilibrium states for φ. We then demonstrate that the family {μtφ}t>1 is
tight when t ↗ +∞, and that all its limit points are dynamically maximizing measures for φ.
The estimates obtained in the course of this proof enable us to conclude that all those limit
measures have compact supports.

2. Weak Convergence and Tightness

Let X be a metrizable topological space. By C(X) we denote the space of all real-valued
continuous functions defined on X, and by Cb(X) its subspace of bounded functions. Denote
by M(X) the space of all Borel probability measures on X endowed with the topology of
weak convergence. Recall that a sequence {μn}∞n=1 ⊂ M(X) converges weakly to a measure
μ ∈ M(X) if and only if

lim
n→∞

∫
gdμn =

∫
gdμ

for every function g ∈ Cb(X). A family F ⊂ M(X) is said to be tight if and only if for every
ε > 0 there exists a compact set F ⊂ X such that μ(X \ F ) ≤ ε for all μ ∈ F . Notice
that if X is compact, then every family F ⊂ M(X) is obviously tight. We will be however
preoccupied mostly with metric spaces which are not necessarily compact, and the concept
of tightness is important to us because of the following well-known fact (see for example [1]).

Theorem 2.1. (Prokhorov) If X is a Polish (complete metrizable and separable) space, then
every tight family of measures from M(X) is a pre-compact subset of M(X).

Since we will deal with several topologies on subsets of M(X), we will call any closed or
compact subset of M(X) (endowed with the weak convergence topology) respectively weakly
closed or weakly compact.

3. Functions escaping to −∞

Let J be a metrizable topological space. A function ζ : J → IR is said to escape to −∞
provided that for every t ∈ IR there exists a compact set F ⊂ J such that ζ(J \F ) ⊂ (−∞, t).
We then say that ζ ∈ C−∞(J). We shall prove the following easy but interesting fact.
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Proposition 3.1. If J is a metrizable space, ζ ∈ C−∞(J), then for every t ∈ IR, the set
ζ−1([t, +∞)) is compact.

Proof. Suppose that ζ ∈ C−∞(J) and fix t ∈ IR. Then there exists a compact set F ⊂ J
such that ζ(J \ F ) ⊂ (−∞, t). So, ζ−1([t, +∞)) ⊂ F , and since ζ−1([t, +∞)) is closed, we
conclude that this set is compact. In order to prove the opposite implication, suppose that
the right-hand side of our equivalence is true and fix s ∈ IR. Then ζ(J \ ζ−1([s, +∞)) =
ζ(ζ−1((−∞, s))) ⊂ (−∞, s), and as ζ−1([s, +∞)) is compact, we are done.

Proposition 3.2. If J is a metrizable space and C−∞(J) �= ∅, then J is a locally compact
σ-compact Polish space.

Proof. Let x ∈ J . Since x ∈ ζ−1
(
(ζ(x) − 1,∞)

)
, since ζ−1

(
(ζ(x) − 1,∞)

)
⊂ J is an open

set, and since ζ−1
(
(ζ(x)−1,∞)

)
⊂ ζ−1

(
[ζ(x)−1,∞)

)
, where the latter sat is compact, we see

that J is locally compact. Thus, it it is completely metrizable. Since J =
⋃∞

n=0 ζ−1([n, +∞)),
the metrizable space J is σ-compact, and therefore separable. We are done.

We also need the following straightforward.

Proposition 3.3. If ζ ∈ C−∞(J), then the function ζ : J → IR is bounded above and it takes
on its supremum.

Proof. Indeed, take an arbitrary t ∈ ζ(J). Then ζ−1([t, +∞)) is a compact subset of J and
therefore the supremum

sup(ζ) = sup
(
ζ |ζ−1([t,+∞))

)
< +∞

is attained on ζ−1([t, +∞)).

It follows from this proposition that the integral
∫

ζdμ (allowed to be −∞) is well-defined for
every μ ∈ M(J) and is < +∞.

4. Existence of Maximizing Measures

Call a triple (J, ζ, Ω) maximizable if J is a metrizable space, ζ ∈ C−∞(J), and Ω is a non-
empty weakly closed subset of M(J) such that

∫
ζdμ ∈ (−∞, +∞) for some μ ∈ Ω. The set

Ω is then called ζ-acceptable. Notice that this holds if for instance Ω contains at least one
measure with compact support. The name ”maximizable” will be wholly justified by the last
result of this section. For every T ∈ IR set

Σ(ζ, Ω, T ) = {μ ∈ Ω :
∫

ζdμ = T} and Σ+(ζ, Ω, T ) = {μ ∈ Ω :
∫

ζdμ ≥ T}.
We shall prove the following.
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Lemma 4.1. For every T ∈ IR the set Σ+(ζ, Ω, T ) is weakly compact.

Proof. For every μ ∈ Σ+(ζ, Ω, T ) and every s > 0, we have

T ≤
∫

ζdμ =
∫

ζ−1((−∞,−s))
ζdμ +

∫
ζ−1([−s,+∞))

ζdμ

≤ −sμ
(
ζ−1((−∞,−s))

)
+ sup(ζ)μ

(
ζ−1([−s, +∞))

)
≤ −sμ

(
ζ−1((−∞,−s))

)
+ max{0, sup(ζ)}.

Hence, μ
(
ζ−1((−∞,−s))

)
≤ s−1

(
max{0, sup(ζ)} − T

)
. Therefore, for every ε > 0, taking

sε = ε−1
(
max{0, sup(ζ)} − T

)
, we see that μ

(
ζ−1((−∞,−sε))

)
≤ ε for all μ ∈ Σ+(ζ, Ω, T ).

Since J \ ζ−1((−∞,−sε)) = ζ−1([sε, +∞)) is a compact set, we therefore see that Σ+(ζ, Ω, T )
forms a tight family of measures. Thus, by Prokhorov’s Theorem, Σ+(ζ, Ω, T ) is weakly pre-
compact, and we are left to show that Σ+(ζ, Ω, T ) is weakly closed in M(J). Toward this
end consider an arbitrary sequence {μn}∞n=1 ⊂ Σ+(ζ, Ω, T ) converging weakly to a measure
μ ∈ M(J). Since Ω is weakly closed, μ ∈ Ω. For every k ≥ 1 put

ζk = max{ζ,−k}.
Then ζk ∈ Cb(J(F )) for every k ≥ 1 and the non-increasing sequence {ζk}∞k=1 converges
pointwise to ζ . Using Lebesgue’s monotone convergence theorem we therefore get∫

ζdμ =
∫

lim
k→∞

ζkdμ = lim
k→∞

∫
ζkdμ = lim

k→∞

(
lim

n→∞

∫
ζkdμn

)

≥ lim inf
k→∞

lim sup
n→∞

∫
ζdμn ≥ lim sup

n→∞
T = T.

So, μ ∈ Σ+(ζ, Ω, T ) and we are done.

Let

s(ζ) = sup{
∫

ζdμ : μ ∈ Ω}.
Since ζ ∈ C−∞(J), we have s(ζ) < +∞. Since Ω is ζ-acceptable, s(ζ) > −∞ and Σ+(ζ, Ω, T ) �=
∅ for all T < s(ζ). Since in addition Σ(ζ, Ω, s(ζ)) =

⋂∞
n=1 Σ+

(
ζ, Ω, s(φ)− 1

n

)
, and since the

sequence {Σ+
φ

(
s(φ) − 1

n

)
}n≥1 is descending, as an immediate consequence of Lemma 4.1, we

get the following.

Corollary 4.2. The set Σ(ζ, Ω, s(ζ)) is non-empty and weakly compact.



MAXIMIZING MEASURES ON METRIZABLE NON-COMPACT SPACES 5

5. Topology and Measure; Auxiliary Results

In this section we fix a metrizable space J and a function ζ ∈ C−∞(J). It is easy to verify
that the function || · ||ζ : Cb(J) → [0,∞) given by the formula

||φ||ζ = sup

{ |φ(z)|
1 + |ζ(z)| : z ∈ J

}

defines a norm on the linear space Cb(J). The metric ρζ : Cb(J)× (Cb(J) → [0, +∞) canoni-
cally associated with the norm || · ||ζ is given by the formula

ρζ(φ, ψ) = ||ψ − φ||ζ.
The topology induced by the metric ρζ obviously depends on the function ζ . In fact two
functions ζ1, ζ2 ∈ C−∞(J) induce the same topology (are equivalent) if and only if

sup

{
max

{
1 + |ζ2(z)

1 + |ζ1(z)| ,
1 + |ζ1(z)

1 + |ζ2(z)|
}

: z ∈ J

}
< +∞.

Despite this inconvenience the most transparent advantage of working with the metric ρζ

instead of the metric induced by the standard supremum norm is that even in the non-
compact case, we have the following.

Proposition 5.1. If ζ ∈ C−∞(J), then the metric space (Cb(J), ρζ) is separable.

Proof. Since for every integer n, the inverse-image ζ−1([n, +∞)) is a compact set, the

Banach space
(
C
(
ζ−1([n, +∞))

)
, || · ||∞

)
is separable. Let Sn ⊂ C

(
ζ−1([n, +∞))

)
be a

corresponding countable dense subset. Using Tietze’s Theorem extend each function φ ∈ Sn

to a function φ̃ ∈ Cb(J) such that sup(φ̃) = sup(φ) and inf(φ̃) = inf(φ). The set

S =
⋃

n∈ZZ

{φ̃ : φ ∈ Sn}

is obviously countable. We shall show that S is a dense subset of (Cb(J), ρζ). Indeed, fix
g ∈ Cb(J) and then ε > 0. Fix n ≥ 0 so large that

2||g||∞ + 1

1 + n
≤ ε. (5.1)

By the definition of Sn and compactness of the set ζ−1([n, +∞)), there exists φ ∈ Sn such
that

|g(z) − φ(z)| ≤ min
{
1, ε

(
1 + inf{|ζ(w)| : w ∈ ζ−1([n, +∞))}

)}
(5.2)

for all z ∈ ζ−1([n,∞)). Then, for every z ∈ ζ−1([n, +∞)), we have

|g(z) − φ̃(z)|
1 + |ζ(z)| =

|g(z) − φ(z)|
1 + |ζ(z)| ≤ ε.
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It also follows from (5.2) that |φ(z)| ≤ 1 + ||g||∞ for all z ∈ ζ−1([n, +∞)), and therefore

|φ̃(w)| ≤ 1 + ||g||∞ for all w ∈ J . Hence, using (5.1), we get that if z ∈ ζ−1((−∞,−n)), then

|g(z) − φ̃(z)|
1 + |ζ(z)| ≤ |g(z)| + |φ̃(z)|

1 + n
≤ 2||g||∞ + 1

1 + n
≤ ε.

Thus ρζ(gφ̃) ≤ ε. So, S is a dense subset of Cb(J), and we are done. .

Now let (J, ζ, Ω) be a maximizing triple. Set

Σ>(ζ, Ω,−∞) = {μ ∈ Ω :
∫

ζdμ > −∞} =
⋃

T∈IR

Σ+(ζ, Ω, T ).

In view of Proposition 5.1 we can fix a dense countable set {φn}∞n=1 in the metric space
(Cb(J), ρζ). Define the function dζ : M(J) × M(J) → [0, +∞) by the formula

dζ(μ, ν) =
∞∑

n=1

2−n min{1, |
∫

φndν −
∫

φndμ|}. (5.3)

We shall prove the following.

Lemma 5.2. The function dζ restricted to the Cartesian product Σ>(ζ, Ω,−∞)×Σ>(ζ, Ω,−∞)
defines a metric on Σ>(ζ, Ω,−∞).

Proof. Obviously the only now non-trivial task is to check that if dζ(μ, ν) = 0, then ν = μ.
Indeed, if dζ(μ, ν) = 0, then ∫

φndν =
∫

φndμ

for all n ≥ 1. Since both measures μ and ν are in Σ>(ζ, Ω,−∞), both integrals
∫
(1 + |ζ |)dν

and
∫
(1 + |ζ |)dμ are finite. Put

R = max{
∫

(1 + |ζ |)dμ,
∫

(1 + |ζ |)dν} ∈ (0, +∞).

Fix now an arbitrary function φ ∈ Cb(J). Fix ε > 0. By the choice of the sequence {φn}∞n=1,
there exists n ≥ 1 such that ρζ(φ, φn)) < ε(2R)−1, which means that |φ(z) − φn(z)| ≤
ε(1 + |ζ(z)|)(2R)−1 for all z ∈ J . Hence

|
∫

φdμ −
∫

φdν| = |
∫

φdμ −
∫

φndμ +
∫

φndμ −
∫

φndν +
∫

φndν −
∫

φdν|

= |
∫

φdμ −
∫

φndμ +
∫

φndν −
∫

φdν|

≤
∫

|φ − φn|dμ +
∫

|φ − φn|dν

≤ ε(2R)−1
∫

(1 + |ζ(z)|)dμ(z) + ε(2R)−1
∫

(1 + |ζ(z)|)dν(z)

≤ ε

2
+

ε

2
= ε.
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Letting ε ↘ 0, we thus get that
∫

φdμ =
∫

φdν. Hence μ = ν and we are done.

We will also need the following.

Lemma 5.3. Suppose that (J, ζ, Ω) is a maximizing triple. If μ ∈ Σ>(ζ, Ω,−∞), μk ∈
Σ>(ζ, Ω,−∞) for all k ≥ 1 and the sequence {μk}∞k=1 converges weakly to μ, then

lim
k→∞

dζ(μk, μ) = 0.

Proof. Fix ε > 0. There then exists q ≥ 1 so large that
∑∞

n=q+1 2−n ≤ ε/2. Since the
sequence {μk}∞k=1 converges weakly to μ, there exists l ≥ 1 such that | ∫ φndμk−∫ φndμ| ≤ ε/2
for all n = 1, 2, . . . , q and all k ≥ l. Hence, for all k ≥ l we have that

dζ(μk, μ) ≤
q∑

n=1

2−n|
∫

φndμk −
∫

φndμ| +
∞∑

n=q+1

2−n ≤ ε

2
+

ε

2
= ε.

We are done.

Two functions φ, ψ ∈ C−∞(J) are said to be boundedly equivalent if and only if sup{|ψ(z) −
φ(z)| : z ∈ J} < ∞ (notice that if φ ∈ C−∞(J), ψ ∈ C(J) and sup{|ψ(z)−φ(z)| : z ∈ J} < ∞,
then ψ ∈ C−∞(J) and φ and ψ are boundedly equivalent). We then write ψ ∼ φ. Obviously
bounded equivalence is an equivalence relation on C−∞(J). The corresponding equivalnce
class of φ ∈ C−∞(J) is denoted by [φ]. Let us record the following obvious fact.

Proposition 5.4. If φ, ψ ∈ C−∞(J) and ψ ∼ φ, then the norms || · ||ψ and || · ||φ are equivalent
and Σ>(ψ, Ω,−∞) = Σ>(φ, Ω,−∞).

As an immediate consequence of the previous results we get the following.

Corollary 5.5. Suppose that (J, ζ, Ω) is a maximizing triple. The the following hold.

(a) The identity map Id : Σ>(ζ, Ω,−∞) → Σ>(ζ, Ω,−∞) from the space Σ>(ζ, Ω,−∞)
endowed with the topology of weak convergence to the space Σ>(ζ, Ω,−∞) endowed
with the metric dζ, is continuous.

(b) Each weakly compact subset of Σ>(ζ, Ω,−∞) is a compact set in the metric space(
Σ>(ζ, Ω,−∞), dζ

)
.

(c) If φ ∈ [ζ ], then for every T ∈ IR, the set Σ+(φ, Ω, T ) is compact in the metric space(
Σ>(ζ, Ω,−∞), dζ

)
.

(d) If φ ∈ [ζ ], then the set Σ(φ, Ω, s(φ)) is compact in the metric space
(
Σ>(ζ, Ω,−∞), dζ

)
.

Proof. Item (a) is a reformulation of Lemma 5.3. Item (b) is an immediate consequence
of item (a). Item (c) is in turn an immediate consequence of item (b) along with Lemma 4.1
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and Proposition 5.4. Eventually item (d) is proved in the same way as item (c), only instead
of Lemma 4.1 one is to apply Corollary 4.2.

Fix again ζ ∈ C−∞(J). The formula

ρζ(φ, ψ) = sup

{ |ψ(z) − φ(z)|
1 + |ζ(z)| : z ∈ J

}

defines a metric on [ζ ]. We shall prove the following.

Lemma 5.6. Let (J, ζ, Ω) be a maximizing triple. Then the function φ → s(φ), φ ∈ [ζ ] ([ζ ]
endowed with the metric ρζ) is lower semi-continuous.

Proof. Fix φ ∈ [ζ ]. By Corollary 4.2 there exists μ ∈ Ω such that s(φ) =
∫

φdμ ∈ IR. Then∫
(1 + |ζ |)dμ ∈ IR. Fix ε > 0. Take an arbitrary ψ ∈ Bρ

(
φ, ε(

∫
(1 + |ζ |)dμ)−1

)
. Then for every

z ∈ J we have |ψ(z) − φ(z)| ≤ ε(
∫
(1 + |ζ |)dμ)−1(1 + |ζ(z)|), and therefore

s(φ) =
∫

φdμ ≤
∫

ψdμ +
∫

ε(
∫

(1 + |ζ |)dμ)−1
)
(1 + |ζ(z)|)dμ(z)

=
∫

ψdμ + ε ≤ s(ψ) + ε.

So,
lim inf

ρζ(ψ,φ)→0
s(ψ) ≥ s(φ),

and we are done.

We end this section with the following.

Lemma 5.7. Let (J, ζ, Ω) be a maximizing triple. Suppose that g, gn ∈ [ζ ], n ≥ 1, and that
limn→∞ gn = g with respect to the metric ρζ on [ζ ]. If μn ∈ Σ(gn, Ω, s(gn)) for all n ≥ 1 and
if the sequence {μn}∞n=1 converges weakly to a measure μ ∈ M(J), then μ ∈ Σ(g, Ω, s(g)).

Proof. Since Ω is weakly compact, μ ∈ Ω. Since g ∼ ζ ,

A := sup{g(z) − ζ(z)| : z ∈ J} < +∞.

Fix an arbitrary s > A+1. Take an arbitrary n ≥ 1 so large, say n ≥ q, that ρζ(gn, g) < 1/2.
Then for every z ∈ g−1((−∞,−s)) we get that

gn(z) < g(z) +
1

2
(1 + |ζ |) ≤ g(z) +

1

2
(1 + |g(z)| + A) = g(z) +

1

2
(1 + A − g(z))

=
1

2
g(z) +

1

2
(1 + A) < −1

2
s +

1

2
(1 + A) =

1

2
(1 + A − s) < 0. (5.4)

Hence, for all n ≥ q, we obtain∫
g−1([−s,+∞))

gndμn ≥
∫

J
gndμn = s(gn).



MAXIMIZING MEASURES ON METRIZABLE NON-COMPACT SPACES 9

Since the set g−1([−s, +∞)) is compact (consequently the sequence {gn}∞n=1 converges to
g uniformly on g−1([−s, +∞))) and since the sequence {μn}∞n=1 converges weakly to μ, we
therefore get

∫
g−1([−s,+∞))

gdμ ≥ lim sup
n→∞

∫
g−1([−s,+∞))

gndμn ≥ lim sup
n→∞

s(gn) ≥ s(g), (5.5)

where writing the last inequality sign we have used Lemma 5.6. Since {g−1([−n, +∞))}∞n=0

is an ascending sequence of Borel sets and since
⋃∞

n=0 g−1([−n, +∞)) = J , applying (5.5), we
get ∫

J
gdμ = lim

n→∞

∫
g−1([−n,+∞))

gdμ ≥ s(g).

Hence μ ∈ Σ(g, Ω, s(g)) and we are done.

As a fact complementary to Lemma 5.7 we shall prove the following.

Lemma 5.8. Let (J, ζ, Ω) be a maximizing triple. Suppose that g, gn ∈ [ζ ], n ≥ 1, and that
limn→∞ gn = g with respect to the metric ρζ on [ζ ]. If μn ∈ Σ(gn, Ω, s(gn)) for all n ≥ 1, then
the sequence {μn}∞n=1 is tight.

Proof. Fix ε > 0. Let A be the proof of Lemma 5.7. Fix then s > A + 1 so large that

1

2
(s − A − 1) >

s

4
, −4

s
(s(g) − 1) <

ε

2
,

sup(g) + 1

s
<

ε

8
. (5.6)

Follow the proof of Lemma 5.7 verbatime from the beginning up to (5.4) included. Since
μn ∈ Σ(gn, Ω, s(gn)) for all n ≥ 1 and using the first inequality in (5.6) along with (5.4), we
get for all n ≥ q that

−s

4
μn

(
g−1((−∞,−s))

)
≥
∫

g−1((−∞,−s))
gndμn

=
∫

J
gndμn −

∫
g−1([−s,+∞))

gndμn = s(gn) −
∫

g−1([−s,+∞))
gndμn.

Hence

μn

(
g−1((−∞,−s))

)
≤ −4s(gn)

s
+

4

s

∫
g−1([−s,+∞))

gndμn. (5.7)

It follows from Lemma 5.6 that for all n ≥ 1 large enough, say n ≥ q1 ≥ q, we have
s(gn) ≥ s(g) − 1. Since g−1([−s, +∞)) is a compact set, the sequence {gn}∞n=1 converges to
g uniformly on g−1([−s, +∞)). In consequence |gn(z) − g(z)| ≤ 1 for all z ∈ g−1([−s, +∞))
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and all n ≥ 1 large enough, say n ≥ q2 ≥ q1. Therefore, we get from (5.7) that for all n ≥ q2

μn

(
g−1((−∞,−s))

)
≤ −4(s(g) − 1)

s
+

4

s

∫
g−1([−s,+∞))

(sup(g) + 1)dμn

= −4(s(g) − 1)

s
+

4

s
(sup(g) + 1)μn

(
g−1([−s, +∞))

)

≤ −4(s(g) − 1)

s
+ 4 max{0, s−1(sup(g) + 1)}

Now, by the last two inequalities from (5.6), we get for all n ≥ q2 that μn

(
g−1((−∞,−s))

)
< ε.

Since J \ g−1((−∞,−s)) = g−1([−s, +∞)) is a compact set, the tightness of the sequnce
{μn}∞n=1 is proved.

6. Uniqueness of Maximizing Measures

We say that a maximizing triple (J, ζ, Ω) is uniquely maximizing if Ω is a convex subset of
M(J). The main result of this section is the following theorem motivated by [4] and [2].

Theorem 6.1. Let (J, ζ, Ω) be a uniquely maximizing triple. Suppose that (H, ||| · |||) is
Banach space contained densly in the normed space (Cb(J), || · ||ζ) and that the inclusion map
from (H, ||| · |||) to (Cb(J), || · ||ζ) is continuous. Then there exists a dense Gδ subset G of
ζ + H ⊂ [ζ ] (with the topology on ζ + H induced by the metric ρH(φ, ψ) = |||ψ − φ|||) such
that each function in G has a unique maximizing measure in Ω.

Proof. Put

Hζ = ζ + H.

Since H is a dense subset of Cb(J), there exists by Proposition 5.1 a sequence {φn}∞n=1 ⊂ H
forming a dense subset of Cb(J). Let dζ be the metric on Σ>(ζ, Ω,−∞) (see Lemma 5.2)
given by (5.3) with the above sequence {φn}∞n=1. For every ε > 0 put

�ε = {φ ∈ [ζ ] : diamdζ

(
Σ(φ, Ω, s(φ))

)
< ε}.

We shall prove that �ε is an open subset of [ζ ] and �ε ∩ Hζ is dense in Hζ (with respect to
the metric ρH). Suppose on the contrary that IRε is not open. Then there exist ψı�ε and a
sequence {ψn}∞n=1 of functions from [ζ ] such that limn→∞ ψn = ψ and ψn /∈ �ε for all n ≥ 1.
Hence

diamdζ

(
Σ(ψn, Ω, s(φn))

)
≥ ε

for all n ≥ 1. It therefore follows from Corollary 5.5(d) that for every n ≥ 1 there are two
measures μ,νn ∈ Σ(ψn, Ω, s(ψn)) such that

dζ(μn, νn) ≥ ε. (6.1)
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In view of Lemma 5.8 and Prokhorov’s Theorem, we may assume without loss of generality
that both sequences {μn}∞n=1 and {νn}∞n=1 converge weakly respectively to the measures μ
and ν in M(J). Since Ω is weakly closed, μ, ν ∈ Ω. Now it follows from Lemma 5.7 that
μ, ν ∈ Σ(ψ, Ω, s(ψ)), whereas using (6.1), we conclude from Corollary 5.5(b) (the set {μ, ν}∪
{μn, νn : n ≥ 1} is weakly compact) that dζ(μ, ν) ≥ ε. But diamdζ

(
Σ(ψ, Ω, s(ψ))

)
< ∅ as

ψ ∈ �ε. This contradiction finishes the proof that �ε is an open subset of [ζ ].

Now let us demonstrate that the set �ε ∩Hζ is dense in Hζ . In order to do it fix ψ ∈ Hζ . For
every k ≥ 1 consider the continuous map πk : Σ>(ζ, Ω,−∞) → IRk defined by the formula

πk(μ) =
(∫

φ1dμ,
∫

φ2dμ, . . . ,
∫

φkdμ
)
.

It follows from (5.3) that

diamdζ

(
π−1

k (w)
)
≤ 2−k (6.2)

for all w ∈ IRk. Fix n ≥ 1 so large that

2−n < ε. (6.3)

Since Ω is convex, so is the set Σ(ψ, Ω, s(ψ)). By Corollary 5.5(d) this is also a compact

subset of Σ>(ζ, Ω,−∞). Hence πn

(
Σ(ψ, Ω, s(ψ))

)
is a convex compact subset of IRn. Thus by

Straszewicz’s Theorem this set has a strictly extreme point, i.e. a point pn = (p1, p2, . . . , pn) ∈
πn

(
Σ(ψ, Ω, s(ψ))

)
⊂ IRn along with a vector (a1, a2, . . . , an) ∈ IRn such that

n∑
i=1

aipi >
n∑

i=1

aiqi (6.4)

for all (q1, q2, . . . , qn) ∈ πn

(
Σ(ψ, Ω, s(ψ))

)
. Since all the functions φj, j ≥ 1, are in Cb(J),

φ =
n∑

i=1

aiφi ∈ Cb(J).

Put

s̃(φ) = sup{
∫

φdμ : μ ∈ Σ(ψ, Ω, s(ψ))} and Σ̃(φ) = {μ ∈ Σ(ψ, Ω, s(ψ)) :
∫

φdμ = s̃(φ)}.

Then using (6.4) we see that Σ̃(φ) ⊂ π−1
n (pn). It therefore follows from (6.2) and (6.3) that

diamdζ

(
Σ̃(φ)

)
< ε. (6.5)

We shall show that for all t ∈ (0, 1) small enough

ψt := ψ + tφ ∈ �ε ∩Hζ .

Indeed, for all t ∈ IR, ψt − ζ = (ψ − ζ) + tφ ∈ H (ψ − ζ ∈ H since ψ ∈ Hζ and tφ ∈ H since
H is linear and {φj}∞j=1 ⊂ H). We are therefore left to show that ψt ∈ �ε for all t ∈ (0, 1)
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small enough. In view of (6.5) there exists an open set U ⊂ Σ>(ζ, Ω,−∞) such that

Σ̃(φ) ⊂ U (6.6)

and

diamdζ
(U) < ε. (6.7)

We shall show that for all t ∈ (0, 1) small enough

Σ
(
ψt, Ω, s(ψt)

)
⊂ U. (6.8)

Indeed, suppose on the contrary that there exists a decreasing to 0 sequence {tk}∞k=1 ⊂ (0, 1)

such that Σ
(
ψtk , Ω, s(ψtk)

)
is not contained in U for any k ≥ 1. This means that for every

k ≥ 1 there exists a measure

μk ∈ Σ
(
ψtk , Ω, s(ψtk)

)
\ U. (6.9)

Since φ ∈ Cb(J), the sequence {ψtk}∞k=1 converges to ψ in the standard supremum metric on

[ζ ], and consequently, limk→∞ ρζ

(
ψtk , ψ

)
= 0. Hence, applying Lemma 5.8 and Prokhorov’s

Theorem, and passing to a subsequence if necessary, we may assume without loss of gener-
ality that the sequence {μk}∞k=1 converges weakly to a measure μ ∈ Ω. Making now use of
Lemma 5.7, Corollary 5.5(a) and (6.9), we conclude that

μ ∈ Σ
(
ψ, Ω, s(ψ)

)
\ U. (6.10)

Now take an arbitrary measure ν ∈ Σ
(
ψ, Ω, s(ψ)

)
. Then for every k ≥ 1 we have that∫

ψdν + tk

∫
φdν =

∫
ψtkdν ≤

∫
ψtkdμk =

∫
ψdμk + tk

∫
φdμk ≤

∫
ψdν + tk

∫
φdμk.

Thus,
∫

φdν ≤ ∫
φdμk. Since the sequence {μk}∞k=1 converges weakly to μ and since φ ∈

Cb(J), we therefore get that
∫

ψdν ≤ ∫
φdμ. This means that μ ∈ Σ̃(φ). Along with (6.6)

and (6.10) gives a contradiction and (6.8) is established. This formula and (6.7) show that

diamdζ

(
Σ
(
ψtk , Ω, s(ψtk)

))
< ε for all t ∈ (0, 1) sufficiently small. Consequently ψt ∈ �ε ∩Hζ

for all t ∈ (0, 1) sufficiently small. Since ψt − ψ = tφ ∈ H, we see that ρH(ψt, ψ) = |||tφ||| =
t|||φ||| → 0, when t ↘ 0. The proof that �ε ∩Hζ is dense in Hζ with respect to the topology
induced by the metric ρH is finished. Putting G =

⋂∞
n=1 �1/n ∩Hζ completes the proof of the

whole theorem.

As an immediate consequence of this theorem we get the following.

Corollary 6.2. If (J, ζ, Ω) is a uniquely maximizing triple, then there exists a dense Gδ subset
G of [ζ ] ([ζ ] endowed with the complete supremum metric) such that each function φ ∈ G has

a unique maximizing measure in Ω (Σ
(
φ, Ω, s(φ)

)
is a singleton).
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We now describe large classes of Banach spaces densly contained in Cb(J). Indeed, given
a ∈ (0, 1], δ > 0 and φ ∈ Cb(J) let

vα(φ) = inf{L ≥ 0 : |φ(y) − φ(x)| ≤ Lρα(x, y) ∀x∈J ∀y∈B(x,δ)}.
Let

Hα = {φ ∈ Cb(J) : vα(φ) < ∞}. (6.11)

Obviously Hα is a linear subspace of Cb(J) and becomes a banach space when endowed with
the norm || ||α determined by the formula

||φ||α = ||φ||∞ + vα(φ).

Observe that the set Hα does not depend on δ and all norms defined with various δs induce
the same topology on Hα. Since Ha is a dense subset of Cb(J) continuously (because of (6.11)
embedded in Cb(J), as an immediate consequence of Theorem 6.1, we get the following.

Corollary 6.3. If (J, ζ, Ω) is a uniquely maximizing triple, then there exists a dense Gδ

subset Gα of ζ + Hα such that each function φ ∈ G has a unique maximizing measure in Ω

(Σ
(
φ, Ω, s(φ)

)
is a singleton).

7. Dynamical Applications

Suppose that ζ : J → IR is an escaping to −∞ continuous function and that T : J → J
is a continuous mapping. Then MT , the set of all Borel probability T -ivariant measures on
J is convex and weakly closed in M(J). Suppose that MT is ζ-acceptable, i.e. that

∫
ζdμ ∈

(−∞, +∞) for some μ ∈ MT . The triple (J, T, ζ) is then called dynamically maximizable and
each maximizing measure of ζ with respect to MT is called dynamically maximizing. Notice
that this holds for instance if for instance MT contains at least one measure with compact
support; this in turn hold for instance if T has at least one periodic orbit. As immediate
consequences of Corollary 4.2, Theorem 6.1, Corollary 6.2 and Corollary 6.3, we respectively
get the following.

Corollary 7.1. Suppose that ζ : J → IR is an escaping to −∞ continuous function and that
T : J → J is a continuous mapping. If the triple (J, T, ζ) is dynamically maximizable, then ζ
has at least one dynamically maximizing measure.

Corollary 7.2. Suppose that ζ : J → IR is an escaping to −∞ continuous function and that
T : J → J is a continuous mapping. Suppose that (H, ||| · |||) is Banach space contained densly
in the Banach space (Cb(J), || · ||ζ) and that the inclusion map from (H, ||| · |||) to (Cb(J), || · ||ζ)
is continuous. If the triple (J, T, ζ) is dynamically maximizable, then there exists a dense Gδ
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subset G of ζ+H ⊂ [ζ ] (with the topology on ζ+H induced by the metric ρH(φ, ψ) = |||ψ−φ|||)
such that each function in G has a unique dynamically maximizing measure.

Corollary 7.3. If (J, T, ζ) is a dynamically maximizing triple, then there exists a dense Gδ

subset G of [ζ ] ([ζ ] endowed with the complete supremum metric) such that each function in
G has a unique dynamically maximizing measure.

Corollary 7.4. Suppose that ζ : J → IR is an escaping to −∞ continuous function and
that T : J → J is a continuous mapping. If the triple (J, T, ζ) is dynamically maximizable,
then there exists a dense Gδ subset Gα of ζ + Hα such that each function in G has a unique
dynamically maximizing measure.

All the corollaries listed above apply to so big aboundance of cases that it is virtually im-
possible to list some special ones. We will however describe in the next section one large
class of dynamical systems with non-compact phase space for which all the corollaries estab-
lished in this section are true and which will be investigated in greater detail and from wider
perspectives in the next section.

8. The Exponential Family

We first consider the family {fλ : CI → CI}λ∈CI\{0} of entire maps of the form

fλ(z) = λ exp(z).

The Fatou set of fλ consists of those points z ∈ CI that admit an open neighbourhood Uz

such that the family {fn
λ |U}∞n=1 of iterates of f , restricted to U is normal. The Julia set Jλ(f)

is defined to be the complement of the Fatou set. Since the map fλ is periodic with period
2πi, we consider it rather on the cylinder than on CI. So, let Q be the quotient space (the
cylinder),

Q = CI/ ∼,

where z1 ∼ z2 if and only if z1 − z2 = 2kπi for some k ∈ ZZ. Let π : CI → Q be the natural
projection. Since the map π ◦ fλ : CI → Q is constant on equivalence classes of relation ∼, it
canonically induces a conformal map

Fλ : Q → Q.

The map Fλ : Q → Q will be the main object of our considerations. The Julia set of Fλ is
defined to be

J(Fλ) = π(J(fλ)). (8.1)
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and
Fλ(J(Fλ)) = J(Fλ) = F−1(J(Fλ)).

The cylinder Q is canonically endowed with a Euclidean metric which without confusion will
be denoted by the same symbol |w − z| for all z, w ∈ P . For ever x ∈ IR we set

Qx = {z ∈ Q : Rez ≤ x} and J(F )x = {z ∈ J(F ) : Rez ≤ x}.
We have thoroughly studied the fractal and dynamical properties of such maps in [8] and [9].
The papers [9] and [10] develop the appropriate versions of thermodynamic formalism and
it is evident from them that the right class of potentials to deal with is formed by Hölder
continuous functions (on the Julia set) lying within a bounded distance from the functions of
the form z �→ −κRez (κ > 0). Here is the spot where we meet the content of the previous
section. Indeed, notice that a continuous function ζ : J(Fλ) → IR is escaping to infinity if
and only if

lim
Rez→+∞

ζ(z) = −∞.

Since the Julia set J(Fλ) is equal to the closure of its periodic points, we see that the triple
(J(Fλ), Fλ, ζ) (where ζ is escaping to infinity) is dynamically maximizable and we may there-
fore formulate the following.

Remark 8.1. All the conclusions of Corollaries 7.1-7.4 hold with the triple (J, T, ζ) replaced
by (J(Fλ), Fλ, ζ)

From now on we assume that our exponential mapping f : CI → CI is hyperbolic which means
that f has an attracting periodic orbit. We then analyze in greater detail the dynamically
maximizing measures of Hölder continuous functions. We single out from them the class of
0+-tame functions and using the ideas from thermodynamic formalism, we demonstrate the
existence of maximizing measures with compact support for such functions. As an outcome
of our method of the proof, we provide a more constructive way of producing maximizing
measures for 0+-tame function. We start with the following two auxiliary results.

Lemma 8.2. If μ is a Borel probability measure on the real line IR, then for every δ > 0,
every α > 0, and every integer n ∈ ZZ there exists xn ∈ [δn, δ(n + 1)) such that

+∞∑
n=−∞

∞∑
k=0

μ
(
[xn − e−αk, xn + e−αk]

)
< ∞.

Proof. For every x ∈ IR and every k ∈ ZZ write

Ix,k = [x − e−αk, x + e−αk)

and note that
∫+∞
−∞ μ(Ix,k)dx = 2e−αk. Let

g(x) =
+∞∑

n=−∞

∞∑
k=0

μ(Ix+δn,k).
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Then ∫ δ

0
g(x)dx =

∞∑
k=0

+∞∑
n=−∞

∫ δ(n+1)

δn
μ(Iy,k)dy =

∞∑
k=0

∫ +∞

−∞
μ(Iy,k)dy =

∞∑
k=0

2e−αk < +∞.

Hence there is x ∈ (0, δ) such that g(x) < +∞, and taking xn = x + δn completes the proof.

Lemma 8.3. If μ is a Borel probability measure on the cylinder Q, then for every δ > 0 there
exists a partition α of Q by rectangles with all sides of length ≤ δ parallel to the coordinate
axes such that for every β > 0

∞∑
n=0

∑
A∈α

μ
(
B(∂A, e−βn)

)
< ∞.

Proof. Let p1 : Q → IR be the orthogonal projection onto the x-axis and let p2 : Q → IR
be the orthogonal projection onto the circle IR/2πZZ. In view of Lemma 8.2 there are points

[xn ∈
[

δ
2
n, δ

2
(n + 1)

]
⊂ IR, n ∈ ZZ, y1 < y2 < . . . < yq ∈ IR/2πZZ such that |yi+1 − yi| < δ and

+∞∑
n=−∞

∞∑
k=0

μ ◦ p−1
1

(
[xn − e−βk, xn + e−βk]

)
< ∞ and

q∑
j=1

∞∑
k=0

μ ◦ p−1
2

(
[yj − e−βk, yj + e−βk]

)
< ∞.
(8.2)

Let α be the partition formed by all the rectangles [xn, xn+1] × [yj, yj+1(modq)] ⊂ Q, n ∈ ZZ,
j = 1, 2, . . . , q. Then

∂α =
+∞⋃

n=−∞

q⋃
j=1

{xn} × S1) ∪ (IR × {yj})

and

B
(
∂α, e−βk

)
=

(
+∞⋃

n=−∞
B(xn, e−βk) × S1

)
∪
⎛
⎝ q⋃

j=1

IR × B(yj, e
−βk)

⎞
⎠ .

Hence, due to (8.2)

∞∑
k=0

∑
A∈α

μ
(
B(∂A, e−βk)

)
≤

+∞∑
n=−∞

μ
(
B(xn, e−βk) × S1

)
+

q∑
j=1

μ
(
IR × B(yj, e

−βk)
)

≤
+∞∑

n=−∞
μ ◦ p−1

1

(
B(xn, e−βk)

)
+

q∑
j=1

μ ◦ p−1
2

(
B(yj, e

−βk)
)

< ∞

We are done.

We now pass to deal directly with Hölder continuous functions. Let

δ =
1

2
min

{
1

2
, dist

(
J(F ), {F n(π(0)) : n ≥ 0}

)}
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Since the map f : J(f) → J(f) is hyperbolic, we see that δ > 0. For every n ≥ 1 and every
v ∈ J(F ) the map

F−n
v : B(F n(v), 2δ) → Q

is then defined to be the holomorphic inverse branch of F n on B(F n(v), 2δ) sending F n(v) to
v. It was proven in [9] that there exist two constants C ≥ 1 and κ > 0 such that

|(F−n
v )′(z)| ≤ Ce−κn (8.3)

for all n ≥ 0, all v ∈ J(F ) and all z ∈ B(F n(v), δ). Let φ be a real-valued Hölder continuous
function defined on some Euclidean R-neighbourhood of the Julia set J(F ) ⊂ CI, R ∈ (0, δ/2).
Hölder continuous means here that

∃(α>0) ∀r∈(0,R) ∃Hr>0 if |y − x| ≤ r, then |φ(y)− φ(x)| ≤ Hr|y − x|α.

Let Re : CI → IR be the real part function (projection onto the real axis).

Definition 8.4. A Hölder continuous function φ : J(F ) → IR is called κ-tame, κ ∈ IR, if
φ ∈ [−κRe], where Re : Q → IR is the function ascribing to each point in the cylinder Q its
real part. This function is called 0+-tame if κ > 0 and 1+-tame if κ > 1.

For every function g : J(F ) → IR and every n ≥ 1 let

Sng =
n−1∑
j=0

g ◦ F j.

The following three basic facts have been essentially proved proved in [9] for the special case
φ(z) = −κRez, κ > 1. The complete proofs in the case of an arbitrary 1+-tame function
requires only minor straightforward modifications and can be found in [10]).

Theorem 8.5. Let φ be 1+-tame. If f : CI → CI is hyperbolic, then For every z ∈ J(F ) the
following limit exists and is independent of the point z.

P(φ) = lim
n→∞

1

n
log

∑
x∈F−n(z)

exp
(
Snφ(x)

)
.

The number P(φ) is called the topological pressure of the potential φ

Theorem 8.6. If f : CI → CI is hyperbolic and φ : J(F ) → IR is a 1+-tame potential, then
there exists a unique Borel probability measure mφ on J(F ) such that

mφ

(
F−n

v

(
B(z, δ)

))
=
∫

B(z,δ)
exp

(
Snφ

(
F−n

v (w)
)
− P(φ)n

)
dmφ(w)

for all n ≥ 1, all z ∈ J(F ) and all v ∈ F−n(z).
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Theorem 8.7. If f : CI → CI is hyperbolic and φ : J(F ) → IR is a 1+-tame potential, then
there exists a unique Borel probability F -invariant measure μφ absolutely continuous with
respect to mφ. In addition μφ is ergodic, equivalent to mφ and the Radon-Nikodym derivative
ψ = dμφ/dmφ has a continuous everywhere (on J(F )) positive and uniformly bounded version.

For every Borel probability F -invariant measure μ on J(F ) let hμ denote the measure-theoretic
entropy of the measure μ with respect to the dynamical system F : J(F ) → J(F ). Our first
result, crucial for investigation of dynamically maximizing measures of 0+-tame functions and
interesting on its own is this.

Theorem 8.8. If f : CI → CI is hyperbolic and φ : J(F ) → IR is a 1+-tame potential, then the
invariant measure μφ is an equilibrium state of the potential φ, that is

P(φ) = sup{hμ(F ) +
∫

φdμ}
where the supremum is taken over all Borel probability F -invariant ergodic measures μ with∫

φdμ > −∞, and

P(φ) = hμφ
+
∫

φdμφ.

Proof. We shall show first that if μ is a Borel probability F -invariant ergodic measure on
J(F ) with

∫
φdμ > −∞, then

P(φ) ≥ hμ +
∫

φdμ.

Let α be the partition constructed in Lemma 8.3 with diameter ≤ δ. We shall demonstrate
that there exists a Borel set Z ⊂ J(F ) such that μ(Z) = 1 and

μφ(αn(x)) ≤ μ(αn(x)) (8.4)

for all x ∈ Z and all n ≥ 1 large enough (depending on x). If μ and μφ are not mutually
singular, then μ = μφ since both measures are ergodic, and (8.4) becomes obvious. So, we
may assume that μ and μφ are mutually singular. This means that there exists a Borel set
Y ⊂ J(F ) such that μφ(Y ) = 0 and μ(Y ) = 1. Seeking contradiction suppose now that there
exists a compact set S ⊂ Y with the following two properties.

(a) μ(S) > 0.
(b) For every x ∈ S there exists an unbounded increasing sequence {nj(x)}∞j=1 such that

μφ(αnj(x)(x)) > μ(αnj(x)(x))

for all j ≥ 1.

Since the measure μφ is regular and μφ(S) = 0, there exists ε > 0 such that μφ(B(S, ε)) <
μ(S)/2. Since for every x ∈ J(F ) and every n ≥ 0, αn(x) ⊂ F−n

x (B(F n(x), δ)), looking at
(8.3) we see that

lim
n→∞ diam(αn(x)) = 0.
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Fix ε > 0. For every x ∈ S there thus exists j(x) ≥ 1 such that diam
(
αnj(x)

(x)
)

< ε. Since any

two elements of the family
{
αnj(x)

(x)
}

x∈S
are either disjoint or one is contained in the other,

we can choose countably many points {xk}∞k=1 ⊂ S such that all the sets Ak = αnj(xk)
(xk),

k ≥ 1, are mutually disjoint and
⋃

k≥1 Ak ⊃ S. Using the property (b) we then get

μ(S) ≤ μ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

μ(Ak) <
∞∑

k=1

μφ(Ak) = μφ

( ∞⋃
k=1

Ak

)
≤ μφ(B(S, ε)) <

1

2
μ(S).

This contradiction finishes the proof of (8.4). In view of Lemma 8.3 we get for every β > 0
that

∞∑
n=1

∑
A∈α

μ
(
F−n

(
B(∂A, e−βn)

))
=

∞∑
n=1

∑
A∈α

μ
(
B(∂A, e−βn)

)
< ∞.

Therefore μ(Z1) = 1, where Z1 is the set of all those z ∈ Z that F n(z) ∈ B(∂A, e−βn) for
finitely many n’s only. Fix z ∈ Z1 and let q ≥ 1 be such that F n(z) /∈ B(∂A, e−βn) for
all n ≥ q. For every k ∈ {0, 1, 2, . . . , n}, put F−k

∗ := F−k
F n−k(z) (so, F−k

∗ is the branch of

F−k sending the point F n(z) back th F n−k(z)). Let p ≥ 0 be an arbitrary real number
such that C−1e−κp ≤ e−β(n−p). This equivalently means that log C + κp ≥ βn − βp or
(κ + β)p ≥ βn − log C, and finally this means that p ≥ β

κ+β
n − log C

κ+β
. So, putting

p = pn = E

(
β

κ + β
n

)
+ 1,

we see that p satisfies the required inequality; in fact

C−1e−κk ≤ e−β(n−k)

for all k ≥ p. This implies that α(F n−k(z)) ⊃ F−k
∗
(
B(F n(z), δ)

)
for all p ≤ k ≤ n − q, since,

by (8.3), the preimage F−kB(F n(z), δ) is contained in the ball B(F n−k(z), Cε−κk) Hence

F−(n−k−q)
(
α(F n−k(z))

)
⊃ F−(n−k−q)

q ◦ F−k
∗
(
B(F n(z), δ)

)
= F−(n−q)

∗
(
B(F n(z), δ)

)
,

where F−(n−k−q)
q : B(F n−k(z), 2δ) → CI is the holomorphic inverse branch of F n−k−q sending

F n−k(z) to F q(z). Thus,

αn−q−p(z) =
n−q⋂
k=p

F−(n−k−q)
(
α(F n−k(z))

)
⊃ F−(n−q)

∗
(
B(F n(z), δ)

)
.

Hence, utilizing Theorem 8.6 and Theorem 8.7, we obtain

μφ

(
αn−q−p(z)

)
≥ μφ

(
F−(n−q)
∗

(
B(F n(z), δ)

))
� ψ(F q(z)) exp

(
Sn−qφ(F q(z)) − P(φ)n

)
mφ

(
B(F n(z), δ)

)
� exp

(
Snφ(z) − P(φ)n

)
mφ

(
B(F n(z), δ)

)
,
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where ψ = dμφ/dmφ and the comparability constant, call it C1 appearing in the above formula
depends on z but is independent of n. Consequently

1

n
log
(
μφ

(
αn−q−p(z)

))
≥ log(C1)

n
+

1

n
Snφ(z) − P(φ) +

1

n
log
(
mφ

(
B(F n(z), δ)

))
.

(8.5)

In view of classical Birkhoff’s ergodic theorem and the Breiman-McMillan-Shanon theorem
(see [6], [11], comp. [7]) there exists an F -invariant Borel set Z2 ⊂ Z1 such that μ(Z2) = 1,
and for all z ∈ Z2

lim inf
n→∞ Re(F n(z)) < ∞, lim

n→∞
1

n
Snφ(z) =

∫
φdμ, lim

n→∞
1

n
log
(
μ(αn(z))

)
= −hμ.

(8.6)

Fix z ∈ Z2. There thus exists an unbounded increasing sequence {nj}∞j=1 of positive integers
such that Re(F nj(z)) ≤ M for some M > 0 and all j ≥ 1. Hence, there exists T > 0 such

that mφ

(
B(F nj(z), δ)

)
≥ T for all j ≥ 1. It therefore follows from (8.5) and (8.6) that for

every z ∈ Z2,

lim inf
j→∞

1

nj

log
(
μφ

(
αnj−q−pnj

(F q(z))
))

≥
∫

φdμ − P(φ).

Combining this along with (8.4) and the last part of (8.6), we get

−hμ ≥ lim inf
j→∞

(
nj

nj − q − pnj

· 1

nj

log
(
μφ

(
αnj−q−pnj

(F q(z))
)))

≥ lim inf
j→∞

(
nj

nj − q − pnj

)(∫
φdμ − P(φ)

)
.

But it follows from the definition of the sequence {pn}∞n=1 that

lim inf
n→∞

n

n − q − pn
= lim inf

n→∞

(
1

1 − q
n
− pn

n

)
= lim

n→∞

(
1

1 − pn

n

)
=

1

1 − β
κ+β

=
κ + β

κ
.

Hence ∫
φdμ − P(φ) ≤ −hμ

κ

κ + β
.

Letting now β ↘ 0, we finally obtain that

P(φ) ≥ hμ +
∫

φdμ.

We shall now prove the easier part of our theorem, that

P(φ) ≤ hμφ
+
∫

φdμφ.

Indeed, let α be the same partition as in the first part of the proof. Since F restricted to each

atom of the partition α is 1-to-1, it follows that αn(x) ⊂ F−n
x

(
B(F n(x), δ)

)
for all x ∈ J(F )

and all n ≥ 0. Applying Birkhoff’s ergodic theorem and the Breiman-McMillan-Shanon
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theorem for the F -invariant measure μφ and utilizing Theorem 8.6 along with Theorem 8.7,
we therefore get for μφ-a.e. x ∈ J(F ) that

−hμφ
≤ lim inf

n→∞
1

n
log μφ

(
F−n

x

(
B(F n(x), δ)

))
� lim inf

n→∞
1

n

(
log(2ψ(x)) + Snφ(x) − P(φ)n

)

= lim
n→∞

1

n
Snφ(x) − P(φ) =

∫
φdμφ − P(φ).

Thus P(φ) ≤ hμφ
+
∫

φdμφ and we are done.

Since φ is 1+-tame there exists a unique κ > 1 such that φ is κ-tame. Our aim is to show
that the family {μtφ}t≥1 is tight. This requires several lemmas. We start with the following.

Lemma 8.9. If f : CI → CI is hyperbolic and φ : J(F ) → IR is a 1+-tame potential, then

χ := sup
t≥1

{|
∫

φdμtφ|} < ∞.

Proof. It has been proved in [10] that
∫

φdμtφ = P′(tφ) and that the function t �→ P(tφ)
is convex. The latter means that the function t �→ P′(tφ) is non-decreasing. Hence P′(tφ) ≥
P′(φ) for every t ≥ 1, and consequently

∫
φdμtφ ≥ ∫

φdμφ > −∞ for all t ≥ 1. The observation
that sup{φ(z) : z ∈ J(F )} < +∞ finishes therefore the proof.

In the proofs of the following two lemmas we occasionally use some results from [10]. They
always correspond to analogous results from [9] and the difference between [9] and [10] is that
in [9] the potentials of the form const+tRez are considered, while [10] deals with more general
potentials tRez plus a bounded Hölder continuous function. The estimates we need here for
this more general class of potentials are straightforward modifications of the corresponding
estimates from [9].

Lemma 8.10. If f : CI → CI is hyperbolic and φ : J(F ) → IR is a 1+-tame potential, then the
family {mtφ}t≥1 is tight and its every limit measure (as t → +∞) has a compact support.

Proof. By Theorem 8.8 and Lemma 8.9,

P(tφ) ≥ −χt (8.7)

for all t ≥ 1. Corollary 3.13 from [10] applied to the potential tφ states that

mtφ(Q
c
n) ≤ 4C4|λ|tκ(tκ − 1)−1 exp

(
tAφ − P(tφ)

)
eM(1−tκ)e(1−tκ)n, (8.8)

where C4 > 0 is an absolute constant and Aφ = ||φ + κRe||∞. (Recall that Qc
n = {z ∈ Q :

Rez > n}).This corollary says in fact that the above estimate holds for for all n ≥ M(t),
where M(t) can be computed precisely:

M(t) =
(
2C2|λ|tκ exp

(
tAφ − P(tφ)

)
(tκ − 1)−1

) 1
tκ−1 ,
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where C2 > 0 is an absolute constant (compare Proposition 3.8 and Corollary 3.9 in [9], where
a slightly simpler case φ(z) = −Rez is considered). We therefore have

lim sup
t↗+∞

M(t) = lim sup
t↗+∞

(
2C2

κt − 1

) 1
κt−1

exp

(
tAφ − P(tφ + tκ log |λ|)

κt − 1

)

≤ lim sup
t↗+∞

(
2C2

κt − 1

) 1
κt−1

exp

(
tAφ + χt + tκ log |λ|)

κt − 1

)

= exp

(
Aφ + χ + κ log |λ|

κ

)
< ∞.

Combining this and (8.8 we see that there exists M > 0 such that for all t ≥ 1 and all n ≥ M

mtφ(Qc
n) ≤ 4C4

κt − 1
e(1−κt)n exp

(
tAφ − P(tφ) + tκ log |λ|

)
.

So, employing (8.7), we get that

mtφ(Qc
n) ≤ 4C4

κt − 1
exp

(
(1 − κt)n + (Aφ + χ + κ log |λ|)t

)
.

Fix n0 ≥ M so large that (κt − 1)n0 ≥ (Aφ + χ + κ log |λ|)t for every t ≥ 1. Then for every
n ≥ n0 and every t ≥ 1, we get that

mtφ(Qc
n) ≤ 2C4

κ − 1
exp

(
(1 − κt)(n − n0)

)
≤ 4C4

κ − 1
exp

(
(1 − κ)(n − n0)

)
(8.9)

Hence

lim
n→∞

(
sup
t≥1

{mtφ(Qc
n)}

)
= 0

and since each set Qn is compact, the proof of the tightness of the family {mtφ}t≥1 is complete.
It also follows from (8.9) that for every t ≥ 1,

mtφ(Qc
n0+1) ≤

4C4

κ − 1
exp(1 − κt).

This implies that limt→+∞ mtφ(Qc
n0+1) = 0 and consequently, m(Qn0+1) = 1 for every limit

measure m of the family {mtφ}t≥1. Since Qn0+1 is a compact set, we are therefore done.

For every t ≥ 1 let ψt = dμtφ/dmtφ. We will also need the following

Lemma 8.11. If f : CI → CI is hyperbolic and φ : J(F ) → CI is a 1+-tame potential, then
there exists x > 1 such that

sup
t≥1

sup
w∈J(F )c

x

{ψt(w)} ≤ 1.



MAXIMIZING MEASURES ON METRIZABLE NON-COMPACT SPACES 23

Proof. Fix w ∈ J(F )c
1, i.e Rew > 1. Treating w as an element of the strip {z ∈ CI : −π <

Imz ≤ π}, let for every k ∈ ZZ, the point wk ∈ Q be the only element of f−1(w + 2πik)
(we treat here the function f as defined on the cylinder Q and taking values in CI.) Let

L̂tφ : Cb → Cb be the normalized Perron-Frobenius operator induced by the potential tφ. It
is given by the formula

L̂tφ(g)(z) = e−P(tφ)
∞∑

k=−∞
etφ(wk)g(wk). (8.10)

It has been proven in [10] (following the proof of Lemma 3.4 in [9]) that there exists a function
Kφ : IR → [0,∞) such that for all n ≥ 0, all y large enough and all t ≥ 1 we have

L̂n
tφ(11) ≤ Kt

φ(y)

mtφ(Qy)
.

It follows from (8.9) that mtφ(Qy) ≥ 1/2 for all y large enough and all t ≥ 1. Hence, there
exists y > 1 (in fact all y large enough are good) such that

L̂n
tφ(11) ≤ 2Kt

φ(y) (8.11)

for all n ≥ 0 and all t ≥ 1. Since φ is a 1+-tame function, there is a unique κ > 1 such that
φ is κ-tame. Recall that Aφ = ||φ + κRe||∞. It is straightforward to calculate that

∞∑
k=−∞

etφ(wk) ≤ 2etAφ(|λ|)κt
∞∑

k=0

(
Rew + 2πk

)−κt ≤ 2etAφ(|λ|)κtRew1−κt

κt − 1

In particular if x ≥ 1 and w ∈ J(F )c
x, then

∞∑
k=−∞

etφ(wk) ≤ 2etAφ(|λ|)κt x1−κt

κt − 1

It therefore follows from (8.7) and (8.10) that

L̂tφ(11)(w) ≤ 2eχtetAφ(|λ|)κt x1−κt

κt − 1
≤ 2

κt − 1
e(χ+Aφ)t(|λ|)κtx1−κt. (8.12)

Since

lim sup
t→+∞

log
(

2

κt − 1
e(χ+Aφ)t(|λ|)κtx1−κt

)
=

= lim sup
t→+∞

(
log

(
2

κt − 1

)
+ (χ + Aφ)t + κ log(|λ|)t + log x − κt log x

)
= −∞

if only κ log x > χ + Aφ + κ log(2|λ|), we therefore see from (8.12) that if x ≥ y > 1 is large
enough, then

L̂tφ(11)(w) ≤
(
2Kt

φ(y)
)−1

(8.13)
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for all t ≥ 1. Applying the operator L̂tφ to inequality (8.11), utilizing its monotonicity
(following from its positivity, which in turn follows immediately from (8.10)), and using
(8.13), we get

L̂n+1
tφ (11)(w) ≤ L̂tφ

(
2Kt

φ(y)11
)
(w) = 2Kt

φ(y)L̂tφ(11)(w) ≤ 1

It therefore follows from the results proven in [10] (comp. Theorem 4.4 in [9]) that ψt(w) ≤ 1
for all t ≥ 1 and all w ∈ J(F )c

x.

Combining this lemma and Lemma 8.10, we get the following.

Proposition 8.12. If f : CI → CI is hyperbolic and φ : J(F ) → IR is a 1+-tame potential, then
the family {μtφ}t≥1 is tight and its every limit measure (as t → +∞) has a compact support.

It therefore follows from Prokhorov’s theorem that the set Mφ of all weak limit points of the
family {μtφ}t≥1 (as t → +∞) is non-empty. The significance of the set Mφ is explained by
the following main result of this section.

Theorem 8.13. If f : CI → CI is hyperbolic and φ : J(F ) → IR is a 1+-tame potential, then
the non-empty set Mφ is contained in the set of all dynamicall maximizing measures for φ.
In particular this latter set contains measures with compact supports.

Proof. In view of Proposition 8.12 and the paragraph following it, we are left to prove that
each measure in Mφ is maximizing for the function φ. So, fix a measure μ ∈ Mφ. There
then exists an increasing sequence {tn}∞n=1 diverging to +∞ such that the sequence {μtnφ}∞n=1

converges weakly to μ. We shall show first that

lim sup
n→∞

∫
φdμtnφ ≤

∫
φdμ. (8.14)

Indeed, let φk ↘ φ be a sequence of bounded continuous functions converging pointwise to
to φ (for example φk = max{φ,−k}). Fix any number T >

∫
φdμ (note that we have not

ruled out the possibility that
∫

φdμ = −∞. It follows from Lebesgue’s monotone convergence
theorem that T >

∫
φkdμ for all k ≥ 1 large enough. Fix one such k. Fix also ε > 0. Since

φk is a bounded continuous function and since the sequence {μtnφ}∞n=1 converges weakly to μ,
we have

∫
φkdμ >

∫
φkdμtnφ − ε for all n ≥ 1 large enough. But

∫
φkdμtnφ ≥ ∫

φdμtnφ since
φk ≥ φ. Combining all these inequalities together, we get that

T >
∫

φkdμ >
∫

φkdμtnφ − ε >
∫

φdμtnφ − ε

for all n ≥ 1 large enough. Hence lim supn→∞
∫

φdμtnφ ≤ T + ε, and letting ε ↘ 0 and
T ↘ ∫

φdμ, formula (8.14) follows. We have already established in the proof of Lemma 8.9
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that the function t �→ P′(tφ) is non-decreasing. In particular, the limit limt↗+∞ P′(tφ) exists,
and looking at (8.14), we see that

lim
t↗+∞

P′(tφ) ≤
∫

φdμ. (8.15)

Seeking contradiction suppose now that μ is not a maximizing measure for the function φ.
Then there exists a Borel probability F -invariant measure ν on J(F ) such that

∫
φdν >

∫
φdμ.

In particular
∫

φdν is a finite number and fix any ∈ IR such that
∫

φdμ < R <
∫

φdν. Since
P(φ) < ∞, it therefore follows from Theorem 8.8 that hν(F ) < ∞. So, we may consider the
linear function lν(t) = hν(F ) + t

∫
φdν. It then follows from (8.15) that l′ν(t) =

∫
φdν > R >

P′(tφ) for all t ≥ 1 large enough. Consequently lν(t) > P(tφ) for all t ≥ 1 sufficiently large.
But this contradicts Theorem 8.8 and finishes the proof.

Corollary 8.14. If f : CI → CI is hyperbolic and φ : J(F ) → IR is a 0+-tame potential, then
the set of all maximizing measures contains at least one measure with compact support.

Proof. The function φ is κ-tame with some κ > 0. So, the function 2
κ
φ is 2-tame, and

since both functions φ and 2
κ
φ have the same set of maximizing measures, an application of

Theorem 8.13 completes the proof.

Since − log |F ′(z)| = − log |λ| + log |ez| = − log |λ| + Rez, the function − log |F ′| is 1-tame
and consequently, 0+-tame. Therefore, the following result follows immediately from Theo-
rem 8.13.

Corollary 8.15. There exists a Borel probability F -invariant measure with μ with compact
support that minimizes the Lyapunov exponent χμ =

∫
log |F ′|dμ.
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[9] M. Urbański, A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential
family, Ergod. Th. & Dynam. Sys. 24 (2004), 279–315.
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