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The meromorphic maps fλ(z) = λ(1−exp(−2z))−1, λ > 0, of the complex plane are thoroughly investigated.
With each map fλ associated is its projection Fλ on the infinite cylinder Q. This map and the set Jr(Fλ)
consisting of those points in the cylinder Q whose ω-limit set under Fλ is not contained in the set {0,−∞}
will form the primary objects of our interest in this article. Let hλ = HD(Jr(Fλ)) be the Hausdorff dimension
of Jr(Fλ). We prove that hλ ∈ (1, 2). The hλ-dimensional Hausdorff measure Hhλ

of Jr(Fλ) is proven to be
positive and finite. The hλ-dimensional packing measure of Jr(Fλ) is shown to be locally infinite at every point
of this set. There exists a unique Borel probability Fλ-invariant measure µλ on Jr(Fλ) absolutely continuous
with respect to the Hausdorff measure Hhλ

. This measure turns out to be ergodic and equivalent to Hhλ
.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The Fatou set F (f) of a meromorphic function f : C → C is the set of all points z ∈ C such that all the
iterates are well-defined and form a normal family on a neighborhood of z. The Julia set J(f) is the complement
of F (f) in C. Thus, the Fatou set is open whereas J(f) is closed, the Fatou set is completely invariant, while
f−1(J(f)) ⊂ J(f) and f(J(f)) ⊂ J(f)∪{∞}. This latter property enables us to consider the dynamical system
f : J(f) → J(f) ∪ {∞}. For a general description of the topological dynamics of meromorphic functions the
reader may consult [1]–[5]. It follows from Montel’s criterion of normality that if f : C → C has at least one
pole which is not an omitted value then

J(f) =
⋃
n≥1

f−n(∞).

In this paper we continue the extensive study (see [16]–[19] and [29]–[32]) of the geometric and dynamical
structure of the Julia sets of transcendental entire and meromorphic functions. Namely, given λ > 0 we consider
the function

fλ(z) =
λ

1 − exp(−2z)
. (1.1)

The research presented in this article stems from [29] and [32]. In order to give an overview of what our paper is
about, let us introduce first the equivalence relation ∼ in C by saying that w ∼ z if and only if w − z ∈ πiZ. We
then define the cylinder

Q := C/ ∼
and let
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Π : C −→ Q

be the quotient map. Since each function fλ is πi-periodic, it induces a unique meromorphic map Fλ : Q\{0} →
Q such that Π ◦ fλ = Fλ ◦ Π. In order to simplify notation we declare Fλ(0) = ∞ so that we may consider the
function

Fλ : Q −→ Q ∪ {∞}.

Observe that 0 is a discontinuity point of Fλ. Note that Π ◦ fn
λ = Fn

λ ◦ Π for every integer n ≥ 1, that

J(Fλ) = Π(J(fλ))

and the map Fλ reflects many interesting features of the dynamics of fλ, for example like escaping to −∞. The
subset Jr(Fλ) of Fλ is defined to consists of all points in Q whose ω-limit set under Fλ is different from the
set {0,−∞}. The map Fλ and the set Jr(Fλ) will form the primary objects of our interest in this article. Let
hλ = HD(Jr(Fλ)) be the Hausdorff dimension of Jr(Fλ). The main results of our paper are those

• hλ ∈ (1, 2),
• the hλ-dimensional Hausdorff measure Hhλ

of Jr(Fλ) is positive and finite,

• the hλ-dimensional packing measure of Jr(Fλ) is locally infinite at every point of this set,

• there exists a unique Borel probability Fλ-invariant measure µλ on Jr(Fλ) absolutely continuous with re-
spect to the Hausdorff measure Hhλ

. This measure is ergodic and equivalent to Hhλ
.

As the reader sees, these four results constitute the basic geometrical and dynamical properties of the set
Jr(Fλ) and the map Fλ : Jr(Fλ) → Jr(Fλ), the properties one is always tempted to establish or to disprove (see
[16]–[19] and [29]–[32]) when dealing with dynamical systems and its invariant fractal sets.

Let us now present briefly, though in greater detail, the contents of this article and the methods used. In
Section 3 we introduce the sets KM and we prove that for all M > 0 large enough their Hausdorff dimension
is larger than 1, the fact which is absolutely necessary for all further results of this paper to be provable. In
particular, in Section 3 we prove that the Hausdorff dimension of the set Jbd(Fλ) is larger than one. In Section 4
equipped with the map Fλ, the concept of tightness, and the K(V ) method from [10] (comp. [23, Ch. 10]), we
prove the existence and uniqueness of a Borel probability conformal measure m (with an exponent greater than 1)
for the map Fλ. We also prove there that the conformal measure is supported on Jr(Fλ). In Section 5 we establish
the existence of a unique Borel ergodic Fλ-invariant measure equivalent to the conformal measure. We do this by
applying first the method of Marco Martens to show the existence of a σ-finite Fλ-invariant conservative ergodic
measure equivalent to the measure m and checking then that this measure is finite. The Section 6 is occupied with
geometric issues. We prove there that the packing measure is locally infinite on Jr(Fλ) whereas the Hausdorff
measure is on Jr(Fλ) finite and positive. We also show that the Hausdorff dimension of Jr(Fλ) is in the open
interval (1, 2). All these geometric properties of the set Jr(Fλ) clearly indicate that this is the right object to
deal with. The inequality HD(Jr(Fλ)) > 1 follows from HD(Jbd) > 1. The inequality HD(Jr(Fλ)) < 2 is an
immediate consequence of a modestly sounding fact that the hλ-packing measure of Jr(Fλ) is locally infinite.
Several useful formulas used throughout the entire paper are placed in the appendix since they do not form the
mainstream of arguments of our approach.

2 Notation

In this extremely short section we collect some not quite obvious notation used throughout the paper. For every
M ∈ R, let

CM = {z ∈ C : Re z < M} and QM = {z ∈ Q : Re z < M}.

For every R > 0 let

B−(0, R) := {z ∈ B(0, R) : Re(z) < 0}
c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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and if 0 < r < R, let

A−(0, r, R) = {z ∈ C : r < |z| < R, Re(z) < 0}.
From now onward we put

f := fλ and F := Fλ.

3 Bounded orbits

In this section we will prove the fact which besides being interesting itself is absolutely necessary for the proofs
of all further results of this paper. Let

Jbd(F ) =
{

z ∈ J(F ) : inf
n≥1

{Re(Fn(z))} > −∞ and inf
n≥1

{|Fn(z)|} > 0
}

. (3.1)

For every M > 0, let

WM = {z ∈ J(F ) : Re(z) ≥ −M and |z| ≥ 1/M}
and let

KM =
⋂
k≥0

F−k(WM ). (3.2)

The fact we just mentioned is this.

Lemma 3.1 We have HD(Jbd(F )) > 1. Even more, there exists s > 1 such that HD(KM ) ≥ s for all M > 0
large enough.

P r o o f. Given T4 ≤ r1 < r2 it follows from (A.18) that

f−1
0 (A−(0, r1, r2)) ⊂ A

„
0,

λ

4r2
,

λ

r1

«
. (3.3)

The heart of our proof is to define and examine an appropriate iterated function system consisting of backward
holomorphic branches of F 2. In order to do it we need some estimates. Fix R > 0 to be determined in the course
of the proof. For every r ∈ (0, R) and every k ≥ 0 put

Pk(r, R) =
{
z ∈ C : −R < Re(z) < −r, kπ − π

2
< Im(z) < kπ + π

2

}
and notice that

Pk(1, R) ⊂ A−

(
0,

1

2
(1 + kπ), R +

„
k +

1

2

«
π

)
⊂ A−

(
0,

1

2
(1 + kπ), 2R + kπ

)
,

where the latter inclusion was written assuming that R ≥ π/2. It then follows from (3.3) and (A.17) that for all
k ≥ 1 large enough, say k ≥ k0, we have

f−2
0 (Pk(1, R)) ⊂ f−2

0

(
A−

(
0,

1

2
(1 + kπ), 2R + kπ

))
⊂ f−1

0

(
A−

(
0,

λ

4(2R + kπ)
,

2λ

1 + kπ

))
⊂
{

z ∈ P : c2 + 1

2
log

„
λ

4(2R + kπ)

«
< Re z < c1 + 1

2
log

„
2λ

1 + kπ

«}
.

(3.4)

Fix an integer p ≥ 2 so large that 2λ
π exp

(
2(c1 + 1 + pj)

) ≥ k0, say p ≥ p0. Fix also an integer q ≥ 2. If

0 ≤ k <
λ

4π
exp
(
2(c2 + 1 + p(j + 1)

)− 2(1 + pq)
π

,
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then

c2 +
1
2

log
„

λ

4(2(1 + pq) + kπ)

«
> −1 − p(j + 1).

Also, if

k >
2λ

π
exp
(
2(c1 + 1 + pj)

)
,

then

c1 +
1
2

log
„

2λ

1 + kπ

«
< −1 − pj.

Utilizing therefore (3.4), we get for all 1 ≤ j ≤ q − 1 that

f−2
0 (Pk(1, 1 + pq)) ⊂ P0(1 + pj, 1 + p(j + 1)). (3.5)

For all integers 2 ≤ q ≤ exp(3p), where p ≥ p0 is large enough, we have

λ

8π
exp
(
2(c2 + 1 + p(j + 1)

)
<

λ

4π
exp
(
2(c2 + 1 + p(j + 1)

)− 2(1 + pq)
π

. (3.6)

For all j = 1, . . . , q − 1 let Ij := [aj , bj ] ∩ N, where aj = 2λ
π exp

(
2(c1 + 1 + pj)) = C4e

2pj and bj =
λ
8π exp(2(c2 + 1 + p(j + 1)) = C5e

2pe2pj with appropriate positive constants C4 and C5. Then

�(Ij) >
1
2

C5e
2pe2pj . (3.7)

For every z ∈ P0(1 + pj, 1 + p(j + 1)) it follows from (A.7) that
∣∣(f2

)′(z)
∣∣ ≤ C6e

2p(j+1) (with an appropriate
positive constant C6), and consequently∣∣(f2

)′(z)
∣∣−t ≥ C−t

6 e−2p(j+1)t. (3.8)

Fixing q = E
(
e3p
)

we now define the conformal iterated function system (see [21] for an account of the theory
of conformal iterated function systems)

Sp = {φj,k : P0(1, 1 + pq) → P0(1, 1 + pq)}1≤j≤q−1, k∈Ij ,

where φj,k(z) = f−2
0 (z+2πik). Fix t ≥ 0 and let P(t) be the topological pressure corresponding to the parameter

t (see [21] for the definition of P(t)). Since, by (3.5), for every j ∈ {1, 2, . . . , q − 1} we have

φj,k(P0(1, 1 + pq)) ⊂ f−2
0 (Pk(1, 1 + pq)) ⊂ P0(1 + pj, 1 + p(j + 1)),

it follows from (3.7) and (3.8) that

P(t) ≥ log
q−1∑
j=1

∑
k∈Ij

inf
{∣∣(F 2

)′(z)
∣∣−t : z ∈ P0(1 + pj, 1 + p(j + 1))

}

≥ log
q−1∑
j=1

�(Ij)C−t
6 e−2p(j+1)t

≥ log

⎛⎝q−1∑
j=1

1
2

C5C
−t
6 e2p(j+1)e−2p(j+1)t

⎞⎠
≥ log

q−1∑
j=1

e2p(j+1)(1−t) + C7
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with an appropriate constant C7 ∈ R independent of p and q = E
(
e3p
)
. Therefore

P(1) ≥ log(q − 1) + C7 > log
(
e3p − 2

)
+ C7 > 0 (3.9)

for all p ≥ 2 large enough. Let Jp be the limit set of the conformal iterated function system Sp. It follows from
[21, Theorem 3.15] that HD(Jp) > 1. Identifying the belt P with Π(P ) ⊂ Q, it follows from the construction
of Sp and the definition of the limit set Jp, that F 2(Jp) ⊂ Jp and that Jp is the closure of the fixed (attracting)
points of all compositions of all maps from Sp. Now, for every z ∈ Jp, the orbit

{
F 2n(z)

}
n≥0

is contained in

P0(1, 1 + pq). Since in addition J(F ) ∩ P0(1, 1 + pq) is a compact subset of Q−1, we conclude that Jp ⊂ KM

for all M > 0 large enough. We are done.

4 Conformal measures

Our first goal in this section is to prove the existence of a conformal measure and to examine in detail its prop-
erties. In order to do it we will need to deal with the sets KM , M > 0, introduced in the previous section.
Since F : J(F ) → J(F ) is continuous, KM is a forward F -invariant compact subset of J(F ). Notice also
that if z ∈ Q, j ≥ 0, F j(z) ∈ Q0 and |F j(z)| ≥ 1/M , then there exists a unique holomorphic inverse branch
F−j

z : B(F j(z), 1/M) → Q of F j , sending F j(z) to z. We shall prove the following.

Lemma 4.1 For all M > 0 and every θ > 1 there exists qM (θ) ≥ 1 such that
∣∣(F k

)′(x)
∣∣ ≥ θ for all x ∈ KM

and all k ≥ qM (θ).

P r o o f. Fix M > 0 and suppose on the contrary that there exist a sequence {xi}∞i=1 ⊂ KM and {ni}∞i=1, an
unbounded increasing sequence of positive integers such that

|(Fni)′(xi)| < θ. (4.1)

Consider holomorphic inverse branches F−ni

i : B(Fni(xi), 1/n) → Q of Fni sending Fni(xi) to xi. Passing to
a subsequence, we may assume that the limits x := limi→∞ xi ∈ KM and y := limi→∞ Fni(xi) ∈ KM exist.
The formula (4.1) equivalently means that |(F−ni

i )′(Fni(xi))| > 1/θ for all i ≥ 1. Applying now the 1
4 -Koebe

distortion theorem we see that

F−ni∗ (B(Fni(xi), 1/n)) ⊃ B
(
xi, (4θn)−1

)
for all i ≥ 1. Therefore, F−ni∗

(
B(Fni(xi), 1/n)

) ⊃ B(x, (8θn)−1) for all i ≥ 1 large enough. Hence
Fni

(
B
(
x, (8θn)−1

)) ⊂ B(Fni(xi), 1/n) ⊂ B(y, 2/n) for all i ≥ 1 large enough. Thus the family{
Fni

∣∣
B(x,(8θn)−1)

}
i≥1

is normal. This however is a contradiction with the fact that xi ∈ KM ⊂ J(F ) and we are done.

Given t ≥ 0 a Borel probability measure on Q is said to be t-conformal for F : J(F ) → J(F ) if and only if
m(J(F )) = 1 and

m(F (A)) =
∫

A

|F ′|t dm (4.2)

for every Borel set A ⊂ J(F ) such that F |A is one-to-one. First, following [10], for every M > 0 large enough,
we shall build a probability Borel measure mM , with the topological support contained in KM , and which will
be “almost conformal” for some tM ≥ 0, meaning that

mM (F (A)) ≥
∫

A

|F ′|tM dmM (4.3)

for every Borel set A ⊂ Q such that F |A is 1-to-1, and (4.2) holds if we assume in addition that A ∩ {z ∈ Q :
Re z ≤ M or |z| ≤ 1/M} = ∅. In what follows throughout Corollary 4.4 we follow closely the appropriate
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1570 Kotus and Urbański: Geometry and dynamics

reasoning from [32]. In the sequel, we will need to refer to some details of the construction, of the measure
mM , so we briefly describe it now. For every M > 0 large enough choose a finite set EM ⊂ KM such that the
B
(
EM , 1/2M

) ⊃ KM and that EM contains the forward orbit of a periodic point ξ of F . Notice that, since
KM is F -forward invariant, the whole forward orbit of ξ is contained in KM . The existence of such a periodic
point follows from the density of periodic points in J(F ). Consider the function

cM (t) = lim sup
n→∞

1
n

log
∑

x∈EM

∑
w∈(F |KM

)−n(x)

|(Fn)′|−t(w).

The function t → cM (t), t ∈ R, has three important properties. First, notice that it follows from Hölder’s
inequality that it is convex in R, so it is continuous. Next, it follows easily from Lemma 4.1 that this function is
strictly decreasing and limt→+∞ cM (t) = −∞. Finally, each set

(
F |KM

)−n(EM ) is not empty as it contains
a point from the forward orbit of ξ. In particular cM (t) ≥ 0 for all t ∈ R. All these properties imply that there
exists a unique value t = tM with cM (tM ) = 0. Following the general construction described in [10] (see also
[23, Chapter 10]), with the sets En =

(
F |KM

)−n(
EM

)
we obtain a measure mM , for which mM (KM ) = 1

and which is “almost conformal” with the exponent tM . We continue on with the following two lemmas; the idea
of their proofs comes from [32].

Lemma 4.2 HD(KM ) ≥ tM .

P r o o f. Fix a point x ∈ KM and an integer n ≥ 1. Let F−n
x : B(Fn(x), 1/M) → Q be the holomorphic

inverse branch of Fn sending Fn(x) to x. Applying now the 1
4 -Koebe distortion theorem and the standard Koebe

distortion theorem, it follows from (4.3) that

mM

(
B
(
x,

1

4
|(Fn)′(x)|−1 1

2M

))
≤ mM

(
F−n

x

(
B
(
Fn(x), 1

2M

)))
≤ KtM |(Fn)′(x)|−tM mM

(
B
(
Fn(x), 1

2M

))
≤ (8KM)tM

(
1

4
|(Fn)′(x)|−1 1

2M

)tM

.

(4.4)

Since, by Lemma 4.1, limn→∞ |(Fn)′(x)| = ∞ uniformly on KM , we conclude that for every r > 0 small
enough there exists n ≥ 1 such that

1
4

∣∣(Fn+1
)′(x)

∣∣−1 1
2M

≤ r ≤ 1
4
|(Fn)′(x)|−1 1

2M
.

Using this, (4.4) and the chain rule, we therefore get that

mM (B(x, r)) ≤ ((8KTM)tM
)
rtM ,

where T = sup{|F ′(y)| : y ∈ KM} is finite since KM is a compact subset of Q \ {0}. This inequality implies
in a standard way that HD(KM ) ≥ tM (see e.g. [23]).

Lemma 4.3 For every M large enough there exists p > 0 such that HD(KM ) ≤ tM+p.

P r o o f. It easily follows from Lemma 4.1 and the absence of critical points of F in Q that

L = inf{|(Fn)′(w)| : w ∈ KM , n ≥ 1} > 0 and lim
n→∞ |(Fn)′(z)| = ∞ (4.5)

for all z ∈ KM . Fix p > 0 so large that KL−1 < p(M(M + p))−1 and consider the set JM+p. Following
the construction of almost conformal measures described above, we choose a finite collection of points EM+p ⊂
KM+p such that the balls B

(
x, (2(M + p))−1

)
, x ∈ EM+p, cover the set KM+p. Let y ∈ KM ⊂ KM+p.

Given n ≥ 0 there exists x ∈ EM+p such that Fn(y) ∈ B
(
x, (2(M + p))−1

)
. By our definition of the set

KM+p, all holomorphic branches of F−i, i ≥ 0, are well-defined on B(x, 1/(M + p)). Fix 0 ≤ i ≤ n and let

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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F−i
y be the holomorphic branch of F−i sending Fn(y) to Fn−i(y). Then, by Koebe’s distortion theorem, for all

z ∈ B
(
x, (2(M + p))−1

)
, we get∣∣(F−i

y

)′(z)
∣∣∣∣(F−i

y

)′(Fn(y))
∣∣ ≤ K.

So, since Fn−i(y) ∈ KM , using (4.5), we obtain
∣∣(F−i

y

)′(z)
∣∣ ≤ K

∣∣(F−i
y

)′(Fn(y))
∣∣ ≤ KL−1. Thus,∣∣F−i

y (x)−Fn−i(y)
∣∣ ≤ KL−1 < p(M(M +p))−1, and consequently, using the fact that Fn−i(y) ∈ WM , we see

that F−i
y (x) ∈ WM+p for all 0 ≤ i ≤ n. This implies that F−n

y (x) ∈ KM+p, i.e., F−n
y (x) ∈ (F |KM+p

)−n(x).
Let Fn(x) be the collection of all holomorphic inverse branches F−n

ν of Fn defined on B
(
x, (M + p)−1

)
, such

that F−n
ν (x) ∈ KM+p. It follows from the above considerations that

KM ⊂
⋃

x∈EM+p

⋃
ν∈Fn(x)

F−n
ν

(
B
(
x, (2(M + p))−1

))
. (4.6)

In addition, in view of Lemma 4.1, diam
(
F−n

ν

(
B(x, (2(M + p))−1)

))→ 0 uniformly as n → ∞, and for every
t ≥ 0 ∑

x∈EM+p

∑
ν∈Fn(x)

(
diam(F−n

ν (B(x, δM+p)))
)t � ∑

x∈EM+p

∑
w∈(F |KM+p

)−n(x)

1
|(Fn)′(w)|t . (4.7)

Fix now an arbitrary t > tM+p. Then cM+p(t) < 0 and∑
x∈EM+p

∑
w∈(F |KM+p

)−n(x)

1
|(Fn)′(w)|t ≤ exp

(
1

2
cM+p(t)n

)

for all n large enough. Combining this, (4.6) and (4.7), we conclude that Ht(KM ) = 0 for all t > tM+p and,
consequently, HD(KM ) ≤ tM+p.

Corollary 4.4 There exists s > 1 such that tM ≥ s for all M large enough.

P r o o f. In view of Lemma 3.1 HD(KM ) > 1 for all M large enough. Fix one such M and put s = tM .
Choose p ascribed to this M according to Lemma 4.3. Then, by this lemma, tM+q ≥ HD(KM ) = s > 1 for all
q ≥ p. We are done.

Suppose now that r ∈ (0, R) with some R > 0 sufficiently small and that z, w ∈ {ξ ∈ C : r ≤ |ξ| ≤ er}. It
then follows from (A.3) that

|Im(f(z)) − Im(f(w))| ≤ λ

r
.

We therefore get the following.

Lemma 4.5 If r ∈ (0, R), then the map F restricted to the annulus {z ∈ C : r ≤ |z| ≤ er} is at most
λ
πr -to-one.

Recall that a family F of Borel probability measures on a metric space Y is called tight if for every ε > 0
there exist a compact set Yε ⊂ Y and a finite set Fε ⊂ F such that ν(Y \ Yε) ≤ ε for all ν ∈ F \ Fε. The first
step in the actual construction of a conformal measure (with an exponent > 1) is provided by the following.

Lemma 4.6 The sequence {mn}∞n=1 is tight in Q.

P r o o f. For every k ≥ T4 put

Xk = {z ∈ J(F ) : −(k + 1) ≤ Re(z) < −k} ⊂ Q−T4 .
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It follows from (A.5) that

f(Xk) ⊂ A
(
0,

λ

2
e−2(k+1), 2λe−2k

)
.

It therefore follows from Lemma 4.5 that there exists a universal constant C > 0 such that F |f(Xk) is at most
Ce2k-to-one. Hence, for every n ≥ 1, so large that 2 ≥ tn ≥ s > 1 (s given by Corollary 4.4), say n ≥ q, we
have using (A.7) that

1 ≥ mn

(
F 2(Xk)

) ≥ (Ce2k
)−1

∫
Xk

∣∣(F 2
)′∣∣tn

dmn

≥ C−1e−2kmn(Xk)
(

e2k

16

)tn

≥ (28C
)−1

e2k(tn−1)mn(Xk)

≥ (28C
)−1

e2k(s−1)mn(Xk).

Hence mn(Xk) ≤ 28Ce2k(1−s), and therefore for every n ≥ q and M ≥ 1

mn(QM ) =
∞∑

k=M

mn(Xk) ≤ 28C

∞∑
k=M

e2(1−s)k =
28Ce2(1−s)M

1 − e2(1−s)
.

Since the last expression in this formula converges to zero when M → ∞, we therefore conclude that the
sequence {mn}∞n=1 is tight.

Since F (QM ) is a punctured neighbourhood of 0, the following lemma is a straightforward consequence of
Lemma 4.6. However, we provide a simple direct proof, as one formula derived in the course of the proof will be
used later.

Lemma 4.7 If m is a weak accumulation point of the sequence {mn}∞n=1, then m({0}) = 0.

P r o o f. The idea of this proof is the same as the idea of the proof of Lemma 4.6. For every k ≥ 0 let

Rk =
{

z ∈ Q : Re−(k+1) ≤ |z| ≤ Re−k
}

.

Similarly to the proof of the previous lemma, we see from Lemma 4.5 that F |Rk
is at most Cek to one with

some constant C > 0 independent of k. Hence for all n ≥ q, q defined in the previous proof, using (A.4) and
Lemma 4.5, we get that

1 ≥ mn(F (Rk)) =
(
Cek

)−1
∫

Rk

|F ′|tndmn

≥ (Cek
)−1(λ/4)tn

(
R−2e2k

)tn
mn(Rk)

� e−ke2ksmn(Rk)

= e(2s−1)kmn(Rk).

Hence

mn(Rk) � e(1−2s)k, (4.8)

and therefore, for every n ≥ q and every j ≥ 0 we get

mn

(
B
(
0, Re−j

))
=

∞∑
k=j

mn(Rk) �
∞∑

k=j

e(1−2s)k =
e(1−2s)j

1 − e(1−2s)
.

Letting now j → ∞, we conclude that m(0) = 0.
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Since, in view of Lemma 3.1, tn ∈ [s, 2], with s > 1, for all n ≥ 1 large enough, we can choose a subsequence
{nk}∞k=1 such that {tnk

}∞k=1 converges. Denote its limit by h ∈ [s, 2]. It follows from Lemma 4.6 and Prohorov’s
theorem (see [6, Theorem 5.1, Section 5, p. 59]) that passing yet to another subsequence, we may assume that
the sequence {mnk

}∞k=1 converges weakly, say to a Borel probability measure m. Since all the measures mnk
,

k ≥ 1, are supported on J(F ), so is m. Since there can be a problem with conformality of measures mnk
only

on sets {z ∈ J(F ) : Re(z) = −nk or |z| = 1/n}, since limk→∞ nk = ∞, and since F : J(F ) → J(F ) is open
and has no singular points except for 0 (which, because of Lemma 4.7, does not matter), proceeding with obvious
modifications as in [10] (comp. [23]) and using Lemma 4.7 we obtain the following.

Theorem 4.8 The weak limit measure m (at the moment depending on the sequence {nk}∞k=1 but see Theo-
rem 4.13 for its uniqueness) is h-conformal for F : J(F ) → J(F ) with some h ∈ (1, 2] and m(0) = 0.

Since, for every nonempty open set U ⊂ J(F ),
⋃

n≥0 Fn(U) ⊃ J(F ) \ {0}, we get the following immediate
consequence of Theorem 4.8.

Proposition 4.9 The h-conformal measure m is positive on nonempty open subsets of J(F ).
For every z ∈ Q let ω(z) ⊂ Q ∪ {−∞} be the ω-limit set of the point z with respect to the dynamical system

F : Q → Q ∪ {−∞}. We recall now the definition of the main object of our interest in this paper.

Jr(F ) := {z ∈ Q : ω(z) \ {0,−∞} �= ∅} = {z ∈ Q : ω(z) �⊂ {0,−∞}. (4.9)

We need one related definition. Let for T > 0

Jr,T (F ) = {z ∈ Q : ω(z) is not contained in W c
T },

where, we recall,

WT = {z ∈ J(F ) : Re(z) ≥ −T and |z| ≥ 1/T }.
Obviously

Jr(F ) =
⋃
n≥1

Jr,n(F ).

Theorem 4.10 There exists M > 0 such that if ν is t-conformal measure for F : J(F ) → J(F ) with t > 1,
then ν(Jr,M (F )) = 1. In particular ν(Jr(F )) = 1.

P r o o f. We shall prove first that there exists an integer T5 ≥ 1 so large that

ν(F (A)) ≥ 4ν(A) (4.10)

for every Borel set A ⊂ B
(
0, Re−T5

) ∩ Q. And indeed, suppose for a contrary that for every integer k ≥ 1
there exists a Borel set Ak ⊂ B

(
0, Re−k

)
such that ν(F (Ak)) < 4ν(Ak). Proceeding in the same way as in

Lemma 4.7, we get for every j ≥ k the following.

4ν(Ak) > ν(F (Ak)) ≥ ν(F (Ak ∩ Rj))

≥ (Cej
)−1

∫
Ak∩Rj

|F ′|tdν

≥ C−1e−j(λ/4)t
(
R−2e2j

)t
ν(Ak ∩ Rj)

≥ C1e
j(2t−1)ν(Ak ∩ Rj)

with some universal constant C1 > 0. Hence, ν(Ak ∩ Rj) ≤ 4C−1
1 ej(1−2t)ν(Ak). Therefore, summing over all

j ≥ k, we get

ν(Ak) =
∞∑

j=k

ν
(
Ak ∩ Rj

) ≤ 4C−1
1 ν(Ak)

∞∑
j=k

ej(1−2t) =
4ek(1−2t)

C1(1 − e(1−2t))
ν(Ak).
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Since ν(Ak) > 0, we therefore get

1 ≤ 4e(1−2t)k

C1(1 − e(1−2t))
.

Since the right-hand side of this inequality converges to 0 when k → ∞, we get a contradiction, and formula
(4.10) is proven. Proceeding now similarly as above and similarly as in the proof of Lemma 4.6 we shall demon-
strate that there exists an integer T6 so large that

ν
(
F 2(A)

) ≥ 4ν(A) (4.11)

for every Borel set A ⊂ Q−T6 . And indeed, suppose for a contrary that for every k ≥ T6 there exists a Borel
set Ek ⊂ Q−k such that ν

(
F 2(Ek)

)
< 4ν(Ek). Proceeding in the same way as in Lemma 4.6, we get for every

j ≥ k that

4ν(Ek) > ν
(
F 2(Ek)

) ≥ ν
(
F 2(Ek ∩ Xj)

)
≥ (Ce2j

)−1
∫

Ek∩Xj

∣∣(F 2
)′∣∣tdν

≥ C−1e−2j

(
1
16

e2j

)t

ν(Ek ∩ Xj)

≥ C−1e2j(t−1)ν(Ek ∩ Xj).

The rest of the argument is exactly the same as the corresponding part of the proof of (4.10). Now set

T7 = max{T5, T6}
and for every k ≥ T7 put

Ik = Ik(F ) =
⋂
n≥0

F−n
(
W c

k

)
= {z ∈ J(F ) : Re(Fn(z)) < −k or |Fn(z)| < 1/k for all n ≥ 0}.

Note that F (Ik) ⊂ Ik . We shall prove that there is M > 0 so large that for all k ≥ M , ν(Ik) = 0. Indeed, set

I∞k := Ik ∩ Q−k, I0
k := Ik ∩ B(0, 1/k).

Then

Ik = I∞k ∪ I0
k .

For every A ⊂ Ik define

G(A) := F 2
(
A ∩ I∞k

) ∪ F
(
A ∩ I0

k

)
. (4.12)

Applying (4.10) and (4.11), we get for all k ≥ 1 large enough that

ν(G(A)) ≥ 1
2
(
ν
(
F 2
(
A ∩ I∞k

))
+ ν
(
F
(
A ∩ I0

k

)))
≥ 1

2
4ν
(
A ∩ I∞k

)
+ 4ν

(
A ∩ I0

k

)
= 2ν(A).

(4.13)

Since A ⊂ Ik and F (Ik) ⊂ Ik

(
so also F 2(Ik) ⊂ Ik

)
, it follows from (4.12) that G(A) ⊂ Ik . Hence Gn(A) ⊂

Ik for all n ≥ 1. We apply now (4.13) to the set A = Ik and obtain

ν(Gn(Ik)) ≥ 2nν(Ik)
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for all n ≥ 1. Since ν is a probability measure, ν(Ik) = 0 for all k ≥ 1 large enough. In particular ν(IM ) = 0,
and consequently

ν

⎛⎝ ∞⋃
j=0

F−j(IM )

⎞⎠ = 0. (4.14)

Since

Jr(F ) \ Jr,M (F ) ⊂ {z ∈ C : ∃k ≥ 0 F k(z) ∈ IM

}
=
⋃
k≥0

F−k(IM ),

applying (4.14), we get ν(Jr(F ) \ Jr,M (F )) = 0. Hence ν(Jr,M (F )) = 1 and we are done.

Now fix T > 0. It follows from the definition of the set Jr,T (F ) that there exists an unbounded increasing
sequence {nk(z)}∞k=1 such that y(z) := limk→∞ Fnk(z)(z) exists and

Fnk(z)(z) ∈ Qc
−2T \ B

(
0,

1

2T

)
for all k ≥ 1. We shall prove the following.

Lemma 4.11 For every T ≥ 1 and every z ∈ Jr,T (F )

lim
k→∞

∣∣(Fnk(z)
)′(z)

∣∣ = +∞.

P r o o f. Put nk = nk(z), z ∈ Jr,T (F ), k ≥ 1. Suppose on the contrary that

lim inf
k→∞

|(Fnk)′(z)| < +∞.

Without loss of generality we may assume that τ := limk→∞ |(Fnk)′(z)| < +∞ and that Fnk(z) ∈
B
(
y(z), (6T )−1

)
for all k ≥ 1. Consider the family

{
F−nk

z : B
(
y(z), (2T )−1

) → Q
}

k≥1
of holomor-

phic inverse branches of Fnk sending Fnk(z) to z. Applying the 1
4 -Koebe’s distortion theorem, we see that

F−nk
z

(
B(y(z), (2T )−1

)) ⊃ B
(
z, (8τ)−1

)
for all k ≥ 1 large enough. Thus Fnk

(
B
(
z, (8τ)−1

)) ⊂
B
(
y(z), (2T )−1

)
, and consequently the family of maps

{
Fnk : B

(
z, (8τ)−1

) → Q
}∞

k=1
is normal, which

contradicts the fact that z ∈ J(F ) and finishes the proof.

Lemma 4.12 Let m be the weak-limit measure whose h-conformality is established in Theorem 4.8. Then for
every nonempty open set U ⊂ Q, we have

lim sup
n→∞

m(Fn(U)) = 1.

P r o o f. Let Ũ be a connected component of Π−1(U). Since periodic points of f are dense in J(f), Ũ

contains a repelling periodic point ω. Denote the period of ω by p. There then exists an open ball W ⊂ Ũ
centered at ω such that fp(W ) ⊃ W . Since ω ∈ J(fp),

⋃
n≥0 fpn(W ) = C \ {0, λ}. Hence for every n ≥ 1

F pn(Π(W )) = Π(fpn(W )) ⊃ Π(W )
and ⋃

n≥0

F pn(Π(W )) =
⋃
n≥0

Π(fpn(W )) = Π

⎛⎝⋃
n≥0

fpn(W )

⎞⎠ = Π(C \ {0, λ}) = Q. (4.15)

Thus

lim
n→∞m

(
F pn(Π(W ))

)
= m

⎛⎝⋃
n≥0

F pn(Π(W ))

⎞⎠ = m(Q) = 1.

Since Π(W ) ⊂ Π
(
Ũ
)

= U , we are done.
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The next theorem is the (important) starting point for the developing the ergodic theory of the dynamical
system F : J(F ) → J(F ) with respect to the h-conformal measure m. The first elements of its proof go back to
[26], the method matured in [27] and [28]. Its versions also can be for example found in [8], [19], [29], [31], and
[32]. The full proof of Theorem 4.13 can be carried out with obvious minor modifications similarly to the proofs
of [19, Theorem 4.23] and [31, Theorem 3.15].

Theorem 4.13 The h-conformal measure m is a unique t-conformal probability measure, with t > 1, for
F : J(F ) → J(F ). In addition, m is conservative and ergodic.

Combining together Theorems 4.8, 4.10, and 4.13, we can compactly collect the main results of this section
in the following single theorem.

Theorem 4.14 The Hausdorff dimension h is a unique exponent t > 1 for which a t-conformal measure exists.
There exists a unique h-conformal measure, which from now on will be denoted by m. The measure m is ergodic,
conservative and m(Jr,M (F )) = 1.

5 An invariant measure equivalent to the conformal measure m

In this section we show the existence and uniqueness of a Borel probability F -invariant measure equivalent to m.
We first prove the following.

Lemma 5.1 Up to a multiplicative constant there exists a unique F -invariant, σ-finite measure µ, which is
conservative, ergodic and equivalent to the h-conformal measure m.

The idea of the proof of Lemma 5.1 is to apply a general sufficient condition for the existence of σ-finite
absolutely continuous invariant measure proven in [20]. In order to formulate this condition suppose that X is
a σ-compact metric space, m is a Borel probability measure on X , positive on open sets, and that a measurable
map T : X → X is given with respect to which measure m is quasi-invariant, i.e., m ◦ T−1 << m. Moreover
we assume the existence of a countable partition α = {An : n ≥ 0} of subsets of X which are all σ-compact and
of positive measure m. We also assume that m

(
X \⋃n≥0 An

)
= 0, and if additionally for all m, n ≥ 1 there

exists k ≥ 0 such that

m
(
T−k(Am) ∩ An

)
> 0, (5.1)

then the partition α is called irreducible. Martens’ result comprising [20, Proposition 2.6 and Theorem 2.9] says
the following.

Theorem 5.2 Suppose that α = {An : n ≥ 0} is an irreducible partition for T : X → X . Suppose that T is
conservative and ergodic with respect to the measure m. If for every n ≥ 1 there exists Kn ≥ 1 such that for all
k ≥ 0 and all Borel subsets A of An

K−1
n

m(A)
m(An)

≤ m
(
T−k(A)

)
m
(
T−k(An)

) ≤ Kn
m(A)
m(An)

, (5.2)

then T has a σ-finite T -invariant measure µ absolutely continuous with respect to m. Additionally µ is equivalent
with m, conservative and ergodic, and unique up to a multiplicative constant.

Notice that the tempting trivial choice of α consisting of A0 = X and An = ∅ for all n ≥ 1 may make (5.2)
fail to hold. If however (5.2) is true for all Borel subsets A of X (and A0 = X), then the resulting measure µ is
finite.

P r o o f o f L e m m a 5.1 (sketch). Since in the sequel we will not only need Lemma 5.1 but a bit more,
namely the way in which the invariant measure claimed in Theorem 5.2 is produced, we shall also describe
this procedure briefly. Following Martens, one considers the following sequences of measures

Skm =
k−1∑
i=0

m ◦ T−i and Qkm =
Skm

Skm(A0)
. (5.3)
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It is proven in [20] that each weak limit µ of the sequence Qk(m) has the properties required in Theorem 5.2,
where a sequence {νk : k ≥ 1} of measures on X is said to converge weakly if for all n ≥ 1 the measures νk

converge weakly on all compact subsets of An. In fact it turns out that the sequence Qkm converges and

µ(F ) = lim
n→∞Qkm(F )

for every Borel set F ⊂ X . Making use of (5.1) and (5.2) one proves (see [20, Lemma 2.4]) the following.

Lemma 5.3 For every n ≥ 0 we have 0 < µ(An) < ∞. Furthermore, the Radon–Nikodym derivative dµ
dm is

bounded above and below on An.

Let us pass now to our map F : Q \ {0} → Q. The ergodicity and conservativity of the measure m is proven
in Theorem 4.13. Thus, we only need to construct an irreducible partition α with property (5.2). Indeed, set
Y = J(F ) \ {0} and for every y ∈ Y consider a ball B(y, r(y)) ⊂ Q such that r(y) > 0, m(∂B(y, r(y))) = 0,
and r(y) < (1/2)min{π/2, dist(y, 0)}. The balls B(y, r(y)), y ∈ Y , cover Y and since Y is a metric separable
space, one can choose a countable cover, say

{
Ãn : n ≥ 0

}
, from them. We may additionally require that the

family
{
Ãn : n ≥ 0

}
is locally finite that is that each point x ∈ Y has an open neighborhood intersecting only

finitely many balls Ãn, n ≥ 0. We now define the family α = {An : n ≥ 0} inductively by setting

A0 = Ã0 and An+1 = Ãn+1 \
n⋃

k=1

Ãn

(and throwing away empty sets). Obviously α is a disjoint family and⋃
n≥1

An ⊃ J(F ) \ {0} \
⋃
n≥0

∂Ãn.

Hence m
(⋃

n≥0 An

)
= 1. The distortion condition (5.2) follows now from Koebe’s distortion theorem with all

constants Kn = K , and irreducibility of partition α follows from openness of the sets An and Lemma 4.12.

Now we are ready to prove the main theorem of this section.

Theorem 5.4 The σ-finite F -invariant measure µ equivalent to the h-conformal measure m proven to exists
in Lemma 5.1 is finite.

P r o o f. It suffices to show that there is M > 0 such that µ(Q−M ) < ∞ and µ
(
B
(
0, Re−M

))
< ∞. Let us

start with the inequality µ(Q−M ) < ∞. For every k ≥ T4 the sets

Xk = {z ∈ J(F ) : −(k + 1) ≤ Re(z) < −k} ⊂ C−T4

have the same meaning as in the proof of Lemma 4.6. Exactly the same argument as that used in the proof of
Lemma 4.6 shows that

m(Xk) ≤ 28Ce2k(1−h). (5.4)

We may assume without loss of generality that A0 = XT4 . Fix k ≥ T4. Let

Sk = [−(k + 2),−2]× [−k/2, k/2] ⊂ C0.

The set {z ∈ C : Imz = (π/2)} is canonically embedded into C, and therefore each holomorphic inverse branch
F−j
∗ : Q \ Π({z ∈ C : Im z = (π/2)}) → Q of F j , j ≥ 1, can be treated as defined on a subset of the complex

plane C. This map restricted to Xk extends in a holomorphically univalent fashion to the set Sk. It therefore
follows from Koebe’s distortion theorem that there exists a constant C1 > 0 such that for every j ≥ 1, every
x ∈ XT3 = A0 and every y ∈ Xk, we have∣∣(F−j

∗
)′(y)

∣∣∣∣(F−j
∗
)′(x)

∣∣ ≤ C1k
3.
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Therefore, using in addition Lemma 5.4, we obtain

m
(
F−j
∗ (Xk)

)
m
(
F−j
∗ (A0)

) ≤ Ch
1 k3h m(Xk)

m(A0)
≤ 28Ch

1 k3hCm(A0)−1e2(1−h)k.

Hence

m(F−j(Xk))
m(F−j(A0))

≤ 28CCh
1 m(A0)−1k3he2(1−h)k,

and consequently, for every n ≥ 0,∑n
j=0 m(F−j(Xk))∑k
j=0 m(F−j(A0))

≤ 28CCh
1 m(A0)−1k3he2(1−h)k.

Thus, applying Theorem 5.2 we get

µ(Xk) = lim
k→∞

∑k
j=0 m(F−j(Xk))∑k
j=0 m(F−j(A0))

≤ 28CCh
1 m(A0)−1k3he2(1−h)k.

Hence

µ(Q−T3) ≤
∞∑

k=T3

µ(Xk) ≤
∞∑

k=T3

28CCh
1 m(A0)−1k3he2(1−h)k < ∞.

Let us now prove that µ
(
B
(
0, Re−M

))
< ∞ for some M large enough. We may assume without loss of

generality that A0 = RM , where M will be determined later in the course of the proof and RM was defined at the
beginning of the proof of Lemma 4.7. Fix j ≥ 0, assume that M is large enough, and for all l ∈ Z \ {0} consider
all the holomorphic inverse branches F−j

∗ : B−
(
0, Re−M

) → Q of F j such that f j(F−j
∗
(
B
(
0, Re−M

))
=

B
(
πli, Re−M

)
or equivalently f j ◦ F−j

∗ (z) = z + πil, which slightly informally means that constructing F−j
∗

we first translate the ball B
(
πli, Re−M

)
(treated as a subset of C) by the vector πil, which brings us far away

(l �= 0) from the singularity zero, and then we take any inverse branch of f j composed at the last step with the
canonical projection Π. The Koebe’s distortion theorem for all those inverse branches F−j

∗ applies and we get
for every k ≥ M that

m
(
F−j
∗ (Rk)

)
m
(
F−j
∗ (A0)

) ≤ Kh m(Rk)
m(A0)

. (5.5)

Recall that K ≥ 1 comes from Koebe’s distortion theorem. In exactly the same way as (4.8) we get the following

m(Rk) ≤ Le(1−2h)k (5.6)

for some constant L > 0 and all k ≥ 0. Combining this with (5.5), we obtain

m
(
F−j
∗ (Rk)

)
m
(
F−j
∗ (A0)

) ≤ LKh

m(A0)
e(1−2h)k. (5.7)

Let now F−j
0 : B−(0, R) → Q be a holomorphic branch of F j such that, abusing slightly notation,

f j ◦ F−j
0 (Rk)) = Rk. It follows from (A.10) (applied for f−1

0 ) that

F j−1

(
F−j

0

(
k⋃

s=M

Rs

))
⊂
{

z ∈ Q : ζ − 1

2
(k + 1) ≤ Re(z) ≤ −2

}
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with some ζ > 0 and every M large enough. Now, the same argument as used in the first part of this proof gives
that

m
(
F−j

0 (Rk)
)

m
(
F−j

0 (A0)
) ≤ C1k

3h m
(
F j−1

(
F−j

0 (Rk)
))

m
(
F j−1

(
F−j

0 (A0)
))

with some constant C1 > 0. Using now (5.6) and (A.12) we conclude that with M large enough

m
(
F−j

0 (Rk)
)

m
(
F−j

0 (A0)
) ≤ C2k

3h ekhm(Rk)
eMhm(A0)

=
C2

eMhm(A0)
k3hekhm(Rk) ≤ LC2

eMhm(A0)
k3he(1−h)k.

Combining this with (5.7), we see that for every j ≥ 1 and every k ≥ M

m(F−j(Rk))
m(F−j(A0))

≤ C3k
3he(1−h)k

with some universal constant C3 > 0. Summing up over all k ≥ M , we get

m
(
F−j

(
B
(
0, Re−M

)))
m(F−j(A0))

≤ C3

∞∑
k=M

k3he(1−h)k < ∞.

Thus, for every n ≥ 0∑n
j=0 m

(
F−j

(
B
(
0, Re−M

)))∑n
j=0 m(F−j(A0))

≤ C3

∞∑
k=M

k3he(1−h)k.

Hence, applying Theorem 5.2 and the construction of the measure µ given by (5.3), we conclude that

µ
(
B
(
0, Re−M

)) ≤ C3

∞∑
k=M

k3he(1−h)k < ∞.

We are done.

As an immediate consequence of this theorem and Lemma 5.1, we get the following.

Corollary 5.5 There exists a unique Borel probability F -invariant measure µ absolutely continuous with
respect to the h-conformal measure m. In addition the invariant measure µ is ergodic and equivalent to m.

6 Hausdorff and packing measures and dimensions

Let Hh and Ph be respectively the h-dimensional Hausdorff and packing measures (see [25], comp. [23] for
example, for its definition and some basic properties). The results of this section provide in a sense a complete
description of the geometrical structure of the sets Jr(F ) and Jr(f) and also they exhibit the geometrical meaning
of the h-conformal measure m. The short proof of the first result improves on the argument from the proof of
[29, Proposition 4.9].

Proposition 6.1 We have Ph(Jr(f)) = Ph(Jr(F )) = ∞. In fact Ph(G) = ∞ for every open nonempty subset
G of Jr(f).

P r o o f. Since m(Jr(F ) ∩ QM ) > 0 for every M ∈ R, it follows from ergodicity and conservativity of the
measure m (see Theorem 4.13) that there exists a set E ⊂ Jr(F ) such that m(E) = 1 and lim infn→∞ ReFn(z) =
−∞ for every z ∈ E. Fix z ∈ E. This formula means that there exists an unbounded increasing sequence
{nk}∞k=1, depending on z, such that {Fnk(z)}∞k=1 ⊂ Q−2 and

lim
k→∞

Re(Fnk(z)) = −∞. (6.1)
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Fix k ≥ 1 and consider the ball B
(
z, K−1 |(Fnk)′(z)|−1

)
. Then

B
(
z, K−1 |(Fnk)′(z)|−1

) ⊂ F−nk
z (B(Fnk(z), 1)),

where F−n
z : B(Fn(z), 1) → C is the analytic inverse branch of Fn mapping Fn(z) to z. Applying Koebe’s

distortion theorem and conformality of the measure m, we obtain

m
(
B
(
z, K−1 |(Fnk)′(z)|−1

)) ≤ Kh |(Fnk)′(z)|−h m(B(Fnk(z), 1))

≤ K2h
(
K−1 |(Fnk)′(z)|−1

)h
m
(
QReF nk (z)+1

)
.

Since by (6.1) limk→∞ m(QReF nk (z)+1) = 0, we see that

lim inf
r→0

m(B(z, r))
rh

= 0.

Since m(G ∩ Jr(F )) > 0 for every nonempty open subset of Jr(F ), this implies (see an appropriate Con-
verse Frostman’s Type Theorem in [11, Theorem E(1), p. 58], or [23]) that Ph(G) = ∞. Since Jr(f) =⋃

k∈Z
(Jr(F ) + 2πik), we are therefore done.

Theorem 6.2 We have 0 < Hh(Jr(F )) < ∞.

P r o o f. Let M > 0 be given by Theorem 4.10. Fix an integer T ≥ 1 and a point z ∈ Jr,T . Consider the

holomorphic inverse branches F
−nk(z)
z : B

(
y(z), (2T )−1

) → Q sending Fnk(z)(z) to z. Since, by 1
4 -Koebe’s

distortion theorem and the standard version of Koebe’s distortion theorem,

F−nk(z)
z

(
B
(
y(z), 1

2T

))
⊃ F−nk(z)

z

(
B
(
Fnk(z)(z), 1

3T

))
⊃ B

(
z,

1

12T

∣∣(Fnk(z)
)′(z)

∣∣−1
)

and

F−nk(z)
z

(
B
(
y(z), 1

24KT

))
⊂ F−nk(z)

z

(
B
(
Fnk(z)(z), 1

12KT

))
⊂ B

(
z,

1

12T

∣∣(Fnk(z)
)′(z)

∣∣−1
)

.

Using the conformality of the measure m along with the standard version of Koebe’s distortion theorem, and the
fact that inf

{
m
(
B
(
w, (12KT )−1

)
: w ∈ Qc

−2T

}
> 0, we deduce that

B−1
T rk(z)h ≤ ν(B(z, rk(z))) ≤ BT rk(z)h, (6.2)

where rk(z) = (12T )−1
∣∣(Fnk(z)

)′(z)
∣∣−1

and BT is independent of z and k. It follows from (6.2) that
Hh
∣∣
Jr,T (F )

≺ m for every T ≥ 1 and that Hh(Jr,M (F )) < ∞. Since m(Jr,T (F ) \ Jr,M (F )) ≤ m(Jr(F ) \
Jr,M (F )) = 0 and since Jr(F ) =

⋃∞
n=0 Jr,M+n(F ), we therefore conclude that Hh(Jr(F )) = Hh(Jr,M (F )) <

∞.
We shall prove now that Hh(Jr(F )) > 0. Put

κ = min
{
1, R,

λ

2
e−2T2

}
.

Fix z ∈ Jr(F ) and r ∈ (0, κ
(
28K

)−1)
. Since, by Lemma 4.11, lim supn→∞ |(fn)′(z)| = +∞, there exists a

least n = n(z, r) ≥ −1 such that

r
∣∣(fn+1

)′(z)
∣∣ > κ

(
28K

)−1
. (6.3)

Thus n ≥ 0 and

r |(fn)′(z)| ≤ κ
(
28K

)−1
.
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Suppose that the holomorphic inverse branch of fn defined on B(fn(z), 32r |(fn)′(z)|) and sending fn(z) to
z does not exist. Then n ≥ 1 and let 1 ≤ k ≤ n be the largest integer such that the holomorphic inverse
branch of fn−(k−1) defined on B(fn(z), 32r |(fn)′(z)|) and sending fn(z) to fk−1(z) does not exist. This

implies that 0 ∈ f
−(n−k)
k (B(fn(z), 32r |(fn)′(z)|)), where f

−(n−k)
k : B(fn(z), 32r |(fn)′(z)|) → C is the

holomorphic inverse branch of fn−k sending fn(z) to fk(z). In addition, n = k since 0 /∈ f−1(C). Hence
|fn(z)| < 32Kr |(fn)′(z)| ≤ κ ≤ R. It now follows from (A.14) that

Re
(
fn−1(z)

) ≤ 1
2

log
„

2

λ

«
+

1
2

log κ ≤ −T2.

We therefore get by (A.2) and (A.5) that
∣∣f ′(fn−1(z)

)∣∣ ≤ 4λ exp
(
2Re

(
fn−1(z)

)) ≤ 8 |fn(z)|. Consequently,

since r
∣∣(fn−1

)′(z)
∣∣ < κ

(
28K

)−1
, we conclude that

32Kr |(fn)′(z)| = 32Kr
∣∣(fn−1

)′(z)
∣∣ · ∣∣f ′(fn−1(z)

)∣∣
≤ 32Kr

∣∣(fn−1
)′(z)

∣∣ · 8 |fn(z)|
= 28Kr

∣∣(fn−1
)′(z)

∣∣ · |fn(z)|
< |fn(z)|.

This contradiction shows that the holomorphic inverse branch f−n
z : B(fn(z), 32r |(fn)′(z)|) → C of fn send-

ing fn(z) to z, is well-defined. Now, the map f restricted to B(fn(z), 32r |(fn)′(z)|) is 1-to-1, and by Koebe’s
1
4 -Theorem

f(B(fn(z), 32r |(fn)′(z)|)) ⊃ B
(
fn+1(z), 8r

∣∣(fn+1)′(z)
∣∣).

Hence there exists a unique holomorphic inverse branch f
−(n+1)
z : B

(
fn+1(z), 8r

∣∣(fn+1
)′(z)

∣∣) → C of fn+1

mapping fn+1(z) to z. Applying Koebe’s 1
4 -Theorem again, we see that

f−(n+1)
z

(
B
(
fn+1(z), 4r

∣∣(fn+1
)′(z)

∣∣)) ⊃ B(z, r). (6.4)

Since the ball B
(
fn+1(z), 4r

∣∣(fn+1
)′(z)

∣∣) intersects at most 1
π 4r

∣∣(fn+1
)′(z)

∣∣+2 � r
∣∣(fn+1

)′(z)
∣∣ horizontal

strips of the form 2πij + (R × [0, 2π)), j ∈ Z, using (6.4), Koebe’s Distortion Theorem, h-conformality of the
measure m and, at the end, (6.3), we get

r−h(m(B(z, r)) � r−hKh
˛̨`

fn+1
´′

(z)
˛̨−h`

r
˛̨`

fn+1
´′

(z)
˛̨´

m
`
Π

`
B

`
fn+1(z), 4r

˛̨`
fn+1

´′
(z)

˛̨´´´
≤ r−hKh

˛̨`
fn+1

´′
(z)

˛̨−h`
r

˛̨`
fn+1

´′
(z)

˛̨´
= Kh`

r
˛̨`

fn+1´′
(z)

˛̨´1−h

< Kh
`
28K

´h−1
.

We are done by applying an appropriate Converse Frostman’s Type Theorem (see e.g. [11, Theorem D(2)] or
[23]).

We end this section with the following.

Theorem 6.3 We have HD(Jr(f)) = HD(Jr(F )) = h ∈ (1, 2).

P r o o f. The first equality sign is obvious. The second one is an immediate consequence of Theorem 6.2. The
inequality h > 1 has been established in Theorem 4.8. We are left to show that h < 2. And indeed, suppose on
the contrary that h = 2. Then Ph = P2 is a constant multiple of the two-dimensional Lebesgue measure on C

and we have a contradiction with Theorem 6.1.
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A Appendix: Useful formulas

It follows from (1.1) that

f ′(z) =
−2λ

(ez − e−z)2
. (A.1)

By (A.1) there exists an integer T1 > 0 so large that

λe2Re(z) ≤ |f ′(z)| ≤ 4λe2Re(z) (A.2)

for all z ∈ C−T1 . Since limz→0
ez−e−z

z = 2, it follows from (A.1) that there exists R > 0 so small that if
|z| ≤ R, then

λ

4 |z| ≤ |f(z)| ≤ λ

|z| (A.3)

and
λ

4
|z|−2 ≤ |f ′(z)| ≤ λ |z|−2. (A.4)

It immediately follows from the formula defining f that there exists an integer T2 ≥ T1 such that

λ

2
e2Re(z) ≤ |f(z)| ≤ 2λe2Re(z) (A.5)

for all z ∈ C−T2 . It in turn immediately follows from this formula that there exists an integer T3 ≥ T2 such that

f(C−T3) ⊂ B(0, R). (A.6)

Using the Chain Rule and combining (A.2) along with (A.4)–(A.6), we see that for all z ∈ C−T3

1
16

e−2Re(z) =
λ2

4
e2Re(z)(2λ)−2e−4Re(z) ≤ λ2

4
e2Re(z) |f(z)|−2 ≤ ∣∣(f2

)′(z)
∣∣

≤ 4λ2e2Re(z) |f(z)|−2 ≤ 4λ24λ−2e2Re(z)e−4Re(z) = 16e−2Re(z).

(A.7)

It follows from this and (A.4) that

lim
Re(z)→−∞

∣∣(f2
)′(z)

∣∣ = ∞ (A.8)

and

lim
Re(z)→0

|f ′(z)| = ∞. (A.9)

Notice that f−1(C0) ⊂ C0 and C0 contains no asymptotic values (0 and λ). So, all the holomorphic inverse
branches of f are well-defined on C0 and given by the formulas:

f−1
k (z) = −1

2
log
∣∣∣1 − λ

z

∣∣∣− (1
2

Arg
(
1 − λ

z

)
+ kπ

)
i, (A.10)

k ∈ Z, where Arg w is the principal value of the argument i.e., Arg w ∈ [−π, π). Equivalently

f−1
k (z) = −1

2
logk

(
1 − λ

z

)
, (A.11)

where the branch of logarithm logk is determined by the requirement that logk(1) = 2πik. Hence

(
f−1

k

)′(z) =
−λ

2z(z − λ)
. (A.12)
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For R > 0 sufficiently small and all z ∈ B−(0, R), we have

2λ

|z| ≥ 1 +
∣∣∣∣λz
∣∣∣∣ ≥ ∣∣∣∣1 − λ

z

∣∣∣∣ ≥ ∣∣∣∣λz
∣∣∣∣− 1 ≥ λ

2 |z| .
So

log 2 + log λ − log |z| ≥ log
∣∣∣1 − λ

z

∣∣∣ ≥ log λ − log 2 − log |z|. (A.13)

Thus, if R > 0 and z ∈ B−(0, R) then for every k ∈ Z

Re
(
f−1

k (z)
)

= −1
2

log
∣∣∣1 − λ

z

∣∣∣ ≤ 1
2

log 2 − 1
2

log λ +
1
2

log |z| ≤ c1 +
1
2

log R (A.14)

and

Re
(
f−1

k (z)
) ≥ c2 +

1
2

log |z|, (A.15)

where c1 = 1
2 log 2 − 1

2 log λ and c2 = − 1
2 (log 2 + log λ). Therefore,

f−1
0 (B−(0, R)) ⊂ Pc1+

1
2 log R :=

{
z ∈ C : Re(z) < c1 + 1

2
log R, −π

2
< Im(z) ≤ π

2

}
. (A.16)

It follows from (A.15) and (A.16) that if 0 < r < R then

f−1
0 (A−(0, r, R)) ⊂ Pc1+

1
2 log R \ Pc2+

1
2 log r. (A.17)

It follows from (A.11) that

λ

4 |z| ≤
∣∣f−1

0 (z)
∣∣ ≤ λ

|z| (A.18)

for some T4 ≥ T3 and all z with |z| ≥ T4. Recall that the dynamics of F is closely related to the dynamics of f ,
since Fn(z) = Π(fn(z)) for all n ≥ 0. Notice that

J(f) ⊂ C0 ∪ {πki : k ∈ Z}, J(F ) = Π(J(f)), F (J(F )) ⊂ J(F ) ∪ {∞}) (A.19)

dist
(
J(F ), Π

({z ∈ C : Imz = π/2})) > 0 (A.20)

and

J(F ) ∩ Π
(
C−T5) ⊂

{
z ∈ Π

(
C−T5) : |Imz| <

π

3

}
with T5 ≥ T4 sufficiently large.
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