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Abstract. The classes of dynamically and geometrically tame functions meromorphic out-
side a small set are introduced. The Julia sets of geometrically tame functions are proven to
be either geometrical circle (in CI) or to have Hausdorff dimension strictly larger than 1. Vast
classes of dynamically and geometrically tame functions are identified.

1. Introduction

We consider a meromorphic function f : CI \ T → CI, where T is a closed subset of CI with
linear (i.e. one-dimensional Hausdorff) measure zero. The Fatou set F (f) is defined in the
same manner as for transcendental meromorphic function of the complex plane i.e. F (f) is
the set of points z ∈ CI such that all the iterates of f are defined and form a normal family
on a neighborhood of z. The Julia set J(f) is the complement of F (f) in C̄I. Thus, F (f)
is open, J(f) is closed, F (f) is are completely invariant while f−1(J(f)) ⊂ J(f) \ T and
f(J(f) \ T ) = J(f).

Denote by h = HD(J(f)) the Hausdorff dimension of the Julia set of f . Let Hh mean the
h-dimensional Hausdorff measure on CI taken with respect to the spherical metric on CI.

We call the function f dynamically tame if the following three conditions are satisfied:

(a) Hh(J(f)) < ∞,
(b) there exists a Borel probability measure μ absolutely continuous with respect to the

Hausdorff measure Hh on J(f),
(c) μ ◦ f−1 = μ and μ is ergodic.

If in addition the following three conditions are satisfied:

(d) J(f) is a Jordan curve,
(e) if A0, A1 are the two connected components of CI \ J(f), then f 2(Ai) = Ai, i = 0, 1,
(f) there are ai ∈ Ai, i = 0, 1, satisfying f 2(ai) = ai,
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then f is called geometrically tame.

The main general result of this paper is the following.

Theorem A. If f is a geometrically tame function, then either J(f) is a geometric circle or
HD(J(f)) > 1.

Remark 1. Although this theorem has a relatively short proof, it however appears to us
clear and elegant, and it depends heavily on hard machineries developed in [8] and [11]. In
Sections 3 and 4 we provide natural large classes of dynamically and geometrically tame
functions including so concrete examples as the maps from the tangent family. Obviously
Theorem A applies to them.

Remark 2. If in addition the map f is finely mixing meaning that for every subarc I of
J(f),

(∗) HD(J(f) \
∞⋃

n=1

fn(I)) ≤ 1,

then the second alternative in Theorem A takes on the stronger form that HD(I) > 1 for
every subarc I of J(f). In particular J(f) contains then no differentiable arcs, the result
strengthening in our setting Stallard’s1 Theorem D from [13]. Notice that f is finely mixing
for instance if f has the local Picard property for some order k = 1, 2, . . . ,ℵ0, at every point
of T , which means that for every z ∈ T and every r > 0, the set CI \ f(B(z, r)) consists of at
most k points. Finally observe that if T is countable then f has the local Picard property of
order 2.

2. Proof of Theorem A

Suppose that HD(J(f)) ≤ 1. We are to show that J(f) is a geometric circle. Since J(f) is
connected, h = HD(J(f)) ≥ 1, and consequently h = 1. It follows from the assumption (a)
that the Hausdorff measure H1(J(f)) is finite. Replacing f by f 2, we may assume without loss
of generality that both a0 and a1 are fixed points of f and both A0, A1 are f -invariant. Let ID
be the unit disc, S1 = ∂ID be the unit circle. Consider two Riemann mappings R0 : ID → A0,
R1 : CI \ ID → A1 such that R0(0) = a0, R1(∞) = a1. Define two holomorphic maps

g0 := R−1
0 ◦ f ◦ R0 : ID → ID and g1 := R−1

1 ◦ f ◦ R1 : CI \ ID → CI \ ID.

By the choice of R0 and R1 we have g0(0) = 0 and g1(∞) = (∞). Since the boundaries of
A0 and A1 are Jordan curves equal to J(f), in view of Caratheodory Theorem the Riemann
maps R0 and R1 extend to homeomorphisms (denoted by the same symbols R0 and R1) of
the closed disk ID and CI \ ID respectively. This implies that g0 (resp. g1) has a continuous
extension to ID \ R−1

0 (T ) (resp. (CI \ ID) \ (R−1
1 (T )). We keep the same notation g0 and g1

1We wish to thank Walter Bergweiler for bringing our attention to Stallard’s result.
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for these extensions. Observe that g0(S
1 \ R−1

0 (T )) ⊂ S1 and g1(S
1 \ R−1

1 (T )) ⊂ S1. Since
H1(J(f)) < ∞, Riesz’s theorem yields that the Riemann mappings R0 and R1 and their
inverse maps are absolutely continuous with respect to the normalized Lebesgue measure l
on S1 and the Hausdorff measure H1 on the Julia set J(f). Since H1(T ) = 0 the measure l
on S1 of R−1

0 (T ) and R−1
1 (T ) thus vanishes. We therefore see that g0 and g1 (abusing a little

bit the terminology in the latter case) are inner functions. It then follows from Theorem A
in [8] that the measure l is g0, g1-invariant (remember that g0(0) = 0, g1(∞) = ∞) and it is
a unique (since it is ergodic) Borel probability g0, g1-invariant measure absolutely continuous
with respect to the Lebesgue measure l on S1. Applying Riesz’s theorem again along with
the assumption (b) we see that both measures μ ◦ R0 and μ ◦ R1 are absolutely continuous
with respect to the measure l on S1 and it follows from (c) that μ ◦ R0 is g0-invariant and
μ ◦R1 is g1-invariant. Hence, it follows from the above that three measures μ ◦R0, μ ◦R1 and
l are equal. We consider the new map R−1

1 ◦ R0 : S1 → S1. Then

l ◦ (R−1
1 ◦ R0)

−1 = l ◦ R−1
0 ◦ R1 = μ ◦ R0 ◦ R−1

0 ◦ R1 = μ ◦ R1 = l,

which means that R−1
1 ◦ R0 preserves the measure l on S1. Since R0 and R1 are homeo-

morphisms of the circle S1, so is R−1
1 ◦ R0. As it preserves the measure l, it is a rotation

of S1. Thus, modifying R0 by composing it with an appropriate rotation, we can make the
composition R−1

1 ◦ R0 to be the identity map. Consequently R1 = R0 on S1. Thus the map
defined by the formula

R(z) =

{
R0(z) if z ∈ ID
R1(z) if z ∈ CI \ ID

is meromorphic on ID∪CI \ID and continuous on CI. A straightforward application of Morera’s
theorem shows that the map R : CI → CI is meromorphic. As R is a homeomorphism, it
therefore must be a Möbius map. Since J(f) = R0(S

1) = R(S1), we get that J(f) is a
geometric circle. �

3. Classes of examples of dynamically tame functions

The first class of tame functions we want to bring reader’s attention to is provided by Walters
expanding conformal maps introduced and thoroughly investigated in [11]. In particular these
maps were proven in [11] to satisfy all the requirements for dynamical tameness.

Recall that non-Möbius meromorphic function f : CI \T → CI is called a Bolsch function (said
to belong to the class S in the original Bolsch’s paper [6]) if T ⊂ CI is a closed countable set
and f cannot be meromorphically extended to any open set containing CI \ T . We denote by
Sing(f−1) ⊂ CI the set of all such points w ∈ CI that for every r > 0 there is a connected
component G of f−1(B(w, r)) such that f : G → B(w, r) is not a covering map onto B(w, r).
The Bolsch function f : CI \T → CI is called topologically hyperbolic if Sing(f−1) is contained
in the Fatou set F (f) and

J(f) ∩
∞⋃

n=0

fn(Sing(f−1)) = ∅.
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Since J(f) �= CI, there exists a Möbius transformation of CI which conjugates f to a function
f ∗, whose Julia set is a compact subset of the complex plane CI. It was remarked in [11] on
p. 636 that if T is a singleton, then the proof of theorem 4.7 in [11] can be easily modified
to demonstrate that f ∗ is a Walters expanding conformal map. In our present case when T
is allowed to be compact and countable, the same is true. Consequently f is a dynamically
tame map. We would like to make it explicit that Bolsch maps form a special subclass of
function meromorphic outside a small set; see [1] and [2] for its definition.

Now we want to describe two natural large subclasses of topologically hyperbolic Bolsch
functions, called Barański maps and post-Barański maps. These maps were introduced and
thoroughly investigated in [11] and were given their names afterword in [12].

Because of evident importance of these two classes of functions and for the convenience of the
reader we now recall briefly their definitions.

Consider functions of the form

f(z) = H(exp(Q(z)))

where Q and H are non-constant rational functions. Let Q−1(∞) = {dj : j = 1, . . . , m} be
the set of poles of Q. Then

f(z) : C̄I \ {dj; j = 1, . . . , m} → C̄I \ {H(0), H(∞)}.
Assume in addition that there is at least one pole di of Q different from H(0) and H(∞).
Assume without loss of generality that di = d1. Let Crit(f) denote the set of critical points
of f . Then the set of asymptotic values Asymp(f) of f is equal to {H(0), H(∞)}.

The function f is then called a Barański map, if the following conditions are satisfied:

(1) J(f) ∩ ⋃∞
n=0 fn (Crit(f) ∪ Asymp(f)) = ∅,

(2) if a ∈ Crit(Q), then exp(Q(a)) is not a pole of H ,
(3) if H has a multiple pole, then Q(∞) �= ∞.

As we already stated Barański maps form a subclass of topologically hyperbolic Bolsch maps,
and are therefore dynamically tame. We would like however to remark (see the tangent family
below) that not all of these maps are Walters expanding conformal maps.

Given a Barański map f(z) = H(exp(Q(z))), the map

f̃(z) = exp(Q(H(z)))

is called the post-Barański map derived from f . It was shown in [11] that all post-Barański
maps are simultaneously Walters expanding conformal maps and topologically hyperbolic
Bolsch maps. So, they are dynamically tame.
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4. Classes of examples of geometrically tame functions

It was proved in [4] that each meromorphic function in the class S (here f ∈ S if and only if
Sing(f−1) is finite) has at most two completely invariant domains. Bergweiler and Eremenko
proved in [5] that each meromorphic function with two completely invariant domains and
with no rationally indifferent periodic points is (with our terminology) topologically hyperbolic
Bolsch function, and in addition, it satisfies conditions (d)-(f) of the definition of geometrically
tame function. Since topologically hyperbolic Bolsch functions are dynamically tame, we infer
that each such function is geometrically tame. Therefore, in view of theorem A, its Julia set
is either geometric circle or it has Hausdorff dimension strictly greater than 1.

In order to get really concrete examples of geometrically tame transcendental meromorphic
functions consider the family

F = {fλ(z) = λ tan z, λ ∈ CI \ {0}, z ∈ CI}.
Speaking about topology in F we will identify its members fλ with parameters λ. The
subfamily

H = {λ ∈ CI \ {0} : fλ has an attracting periodic cycle}.
called, the hyperbolic subfamily of F , consists precisely of topologically hyperbolic Bolsch
functions from F , which were proven to be dynamically tame. Let Ω1 ⊂ H be the subset of
H composed of maps fλ that have two distinct attracting fixed points and let Ω2 ⊂ H be
formed by maps with exactly one periodic cycle of period 2. L. Keen and the first author
proved in [10] that Ω1 and Ω2 are topological open disks. They also proved in [9] that all
members Ω1 and Ω2 satisfy conditions (d)-(f) of the definition of geometrically tameness (for
Ω1 it also follows from the later paper [5]). So Ω1 ∪ Ω2 consist entirely of geometrically tame
mappings. Therefore, our theorem A yields the following.

Theorem B. If λ ∈ (Ω1∪Ω2), then HD(J(fλ)) > 1 unless λ ∈ IR and then J(fλ) = IR∪{∞}
(a geometric circle passing trough ∞).

Proof The fact that J(fλ) = IR ∪ {∞} if λ ∈ (Ω1 ∪ Ω2) ∩ IR was established in [3]. If
λ ∈ (Ω1 ∪Ω2) \ IR, then {(k + 1

2
)π : k ∈ ZZ}∪ f−1

λ (π
2
) ⊂ J(fλ) and f−1

λ (π
2
)∩ IR = ∅. Therefore

J(fλ) can not coincide with any geometric circle and consequently HD(J(fλ)) > 1. We are
done. �

Some less standard interesting concrete examples of geometrically tame transcendental mero-
morphic functions can be found in section 3 of [5].
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