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Abstract

We investigate the finer fractal structure of the set of points escaping
to infinity under iteration of an arbitrary exponential map. Provid-
ing exact formulas, we show how sensitively the Hausdorff dimension
depends on the rate of growth of canonical Devaney-Krych codes.

1 Introduction

We consider complex exponential maps E : C �→ C, E(z) = λ exp z where
λ �= 0 is a complex parameter. It is known (see [3]) that for these maps the
Julia set is the closure of the set of points escaping to infinity under iteration
of E.
Let

I∞ = {z : |En(z)| → ∞ as n → ∞}.
This set is actually dynamically boring. However it has a very rich geometri-
cal structure. Topologically, for a big set of parameters λ, the set I∞ consists
of uncountably many infinite “hairs”. In order to contribute towards better
understanding of geometry of I∞, our aim is to show that the set I∞ exhibits
a natural finer fractal structure. Since |En(z)| = |λ| exp(Re En−1(z)), we
have

I∞ = {z : Re(En(z)) → ∞ as n → ∞}.
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Therefore, for every q ≥ 0 , I∞ =
⋃

k≥0 Ik,q
∞ , where

Ik,q
∞ = {z ∈ I∞ : ∀n ≥ k Re(En(z)) > q}.

In order to shorten notation, we will write I0
∞ for I0,q

∞ and will always assume
that q > 0 is large enough.
We divide the right half-plane H = {z : Re z > 0} into infinitely many strips
(as in [2]):

Pj = {z ∈ H : (2j − 1)π ≤ Im z < (2j + 1)π} where j ∈ Z.

Every point z which remains in H under iteration of E has uniquely defined
sequence of integers s(z) = (s0, s1, ..) such that

sk = j iff Ek(z) ∈ Pj.

The sequence s(z) is called the itinerary of the point z. The necessary condi-
tion for a given sequence s to be the itinerary of a point z (remaining in H)
is the following: |sn| cannot grow faster than En(x) for some real x (because
the imaginary part of En(z) is at most equal to |En(z)|). In fact (see [2])
this is also a sufficient condition.
So, itineraries of escaping points cannot grow faster than moduli of their n-th
iterations. It follows from [6] (see also [4]) that the Hausdorff dimension of
the set

{z ∈ I0
∞ : 2π|sn(z)| ≥ |En(z)|/2}

is equal to 2.
The set of points which escape to ∞ in such way that sn(z) grows relatively
slowly in comparison to |En(z)| can have small Hausdorff dimension. It
follows from [5] and [7] that for every ε ∈ (0, 1)

HD({z ∈ I0
∞ : 2π|sn(z)| ≤ |En(z)|ε}) ≤ 1 + 2ε.

We are interested in the structure of the set I∞ in terms of the Hausdorff
dimension of some of its significant subsets. We find a natural condition for
the rate of growth of itineraries which ensures that the Hausdorff dimension
of the set of points whose itineraries grow at most in this rate, is equal to
arbitrarily chosen number t ∈ [1, 2].

For all integers k ≥ 0, l ≥ k and every ε > 0 define

Dk,l
ε =

{
z ∈ Ik,q

∞ : 2π|sn(z)| ≤ |En(z)|
(log |En(z)|)ε

for all n ≥ l

}
,

where q > 0 is fixed and large enough.

The main result of our article is the following.
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Theorem A. For every ε > 0 and all integers 0 ≤ k ≤ l

HD(Dk,l
ε ) = 1 +

1

1 + ε
.

Notice that I∞ has no compact (in C) forward invariant subsets and
for any Borel probability invariant measure μ on the Julia set, μ(I∞) =
0. Therefore, in order to prove Theorem A we have to look for subtler
geometrical methods than those rutinely used in a conformal setting. Since
the set of points in I0

∞ whose itinerary is 1, 1, 1, .. contains a curve (see [1])
and it belongs to Dk,l

ε for any ε > 0 and l sufficiently big we get the following
immediate consequence of Theorem A.

Corollary 1.1. The Hausdorff dimension of the set

D∞ =

{
z ∈ I0

∞ : ∀ε > 0 ∃l ∀n ≥ l 2π|sn(z)| ≤ |En(z)|
(log |En(z)|)ε

}

is equal to 1.

2 Preliminaries

The Theorem A will turn out to be an immediate consequence of a more
general result whose formulation requires some preparations.
Let h : R+ �→ R+ be an increasing function such that

h(x) + π ≤ x

4eπ
for all x ∈ R+ large enough, (1)

h(eπx) ≤ Ch(x) for some constant C

and
lim

x→∞
h(x) = +∞.

Call these functions exp-adapted. If in (1), 4eπ is replaced by 2eπ the function
h is then call weakly exp-adapted. Fix an exp-adapted function h : R+ �→ R+

and let

D(h) = Dq(h) = {z ∈ I0,q
∞ : 2π|sn(z)| ≤ h(|En(z)|) for all n ≥ 0}.

We will need the following two lemmas.
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Lemma 2.1. If q is sufficiently large then Re(En(z)) diverges to infinity
uniformly with respect to z ∈ Dq(h).

Proof. Fix q > 0 so large that

|λ| exp(
√

3x/2) ≥ 2x for every x ≥ q.

For every z ∈ Dq(h) and every n ≥ 0, we have

Re(En(z)) =
√

|En(z)|2 − (Im En(z))2

≥
√

|En(z)|2 − (h(|En(z)|) + π)2

≥
√

|En(z)|2 − |En(z)/2|2

=

√
3

2
|En(z)|.

And therefore, in view of our chioce of q, we get

|En+1(z)| = |λ| exp(Re(En(z))) ≥ |λ| exp(
√

3|En(z)|/2) ≥ 2|En(z)|. (2)

Hence
Re(En+1(z)) ≥

√
3|En(z)| ≥

√
3 Re(En(z))

Denote by B(x, r) the ball centered at x of the radius r.

Lemma 2.2. For every α > 0 and every T > 0 there exist L > 0 and n0 ≥ 0
such that for every n ≥ n0,

|(En+1)′(z)| ≥ L|(En)′(z)|α
for all z ∈ Dq(h) ∩ B(0, T ).

Proof. It follows from the first inequality in (2) that for every α > 0 there
exists n0 such that

|En+1(z)| ≥ |En(z)|α (3)

for all z ∈ Dq(h) and all n ≥ n0.
Let L denote the infimum of the map z �→ |(En0+1)′(z)| · |(En0)′(z)|−α in
B(0, T ) ∩ {Re z > 0} (it exists and it is positive). We now proceed by
induction. For n = n0 the lemma holds (it is just the definition of L).
Suppose now that it is true for some n ≥ n0. Using (3) we get

|(En+2)′(z)| = |E ′(En+1)(z)| · |(En+1)′(z)|
≥ L|En+2(z)| · |(En)′(z)|α
≥ L|En+1(z)|α · |(En)′(z)|α
= L|(En+1)′(z)|α.
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Let
Hλ = {z ∈ C : Re z > max{0,−| log |λ|| + 2π}.

For every k ∈ Z define

Sk =
{
z ∈ Hλ : −π

2
+ 2kπ − arg λ ≤ Im z ≤ π

2
+ 2kπ − arg λ

}
.

Notice that each sufficiently high iterate of any point escaping to infinity (in
I∞) lies in

⋃
k∈Z

Sk. Notice also that the whole orbit of any point in I0
∞ is

contained in this union. Consider a covering of Sk by squares B with the
following properties:

(a) the lengths of sides of B are equal to π

(b) the horizontal sides are contained in Sk

(c) the right vertical side does not belong to B.

Denote by B the family of all elements of these (all k ∈ Z) coverings. Fix
q ≥ max{0,−| log |λ|| + 2π}. Notice that if Re z ≥ −| log |λ|| + 1, then

|E ′(z)| ≥ |λ| exp(−| log |λ|| + 1) = e > 1. (4)

If z ∈ I0
∞ (which implies that {z, E1(z), E2(z), ...}, the whole orbit of z, stays

in Hλ), then for every n ≥ 0 there exists a unique square Bn(z) ∈ B such that
En(z) ∈ Bn(z). It follows immediately from (4) that there exists a unique
holomorphic inverse branch E−n

z : Bn(z) → Hλ of En sending En(z) to z.
Inequality (4) implies also that

(i) Ek(E−n
z (Bn(z))) ⊂ {z ∈ C : Re z > | log |λ|| + 1} for every 0 ≤ k ≤ n.

(ii) diam(E−n
z (Bn(z))) ≤ √

2πe−n

(iii) there exists a constant K ≥ 1 independent on n and z such that for all
x, y ∈ Bn(z)

|(E−n
z )′(x)|

|(E−n
z )′(y)| ≤ K.

Notice that for all ξ, η ∈ Bn−1(z),

|E ′(ξ)|
|E ′(η)| ≤ eπ (5)

Put
Kn(z) = E−n

z (Bn(z)).
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Combining (iii) with (5) we get that

|(En)′(x)|
|(En)′(y)| ≤ K for all x, y ∈ Kn−1(z) (6)

with an appropiately larger constant K (independent of n and z).
It follows from (ii) that if z ∈ Ik

∞ then⋂
n≥k

Kn(z) = {z}.

Observe that En(Kn−1(z)) is a half-annulus ”centered” at the origin. Denote
its inner and outer radii respectively by rn(z) and Rn(z). Note that

Rn(z)

rn(z)
= eπ

and, in view of (5),

K−1|E ′(En−1(z))| ≤ rn(z) ≤ Rn(z) ≤ K|E ′(En−1(z))| (7)

with sufficiently large K. Consequently

K−n
n∏

j=1

rj(z) ≤ |(En)′(z)| ≤ Kn
n∏

j=1

rj(z) (8)

and there exists a constant M ≥ 1 such that

M−n

(
n∏

j=1

rj(z)

)−1

≤ diam(Kn(z)) ≤ Mn

(
n∏

j=1

rj(z)

)−1

. (9)

It is easy to see that for z ∈ D(h) radii Rn(z) and rn(z) grow superexponen-
tialy fast:

Lemma 2.3. If z ∈ D(h) (and q is large enough) then for every n ∈ N the
following inequality holds

Rn+1(z) ≥ rn+1(z) ≥ exp

(√
3

2
rn(z)

)
= exp

(√
3

2eπ
Rn(z)

)
.

Proof. Take q so large that (1) is satisfied for all x ≥ q. Since

h(|En(z)|) ≤ |En(z)|
2eπ

≤ Rn(z)

2eπ
=

rn(z)

2
≤ rn(z),

6



there exists z′ ∈ En(Kn−1(z)) such that |z′| = rn(z) and Im z′ = h(|En(z)|).
Then

rn+1(z) ≥ |λ| exp(Re(En(z)) − π) ≥ |λ|e−π exp(Re z′).

But

Re z′ ≥
√

rn(z)2 − (h(|En(z)|)2 ≥
√

3

2
rn(z).

Hence

rn+1(z) ≥ e−π|E(z′)| = |λ| exp
(
Re(z′) − π

)≥ |λ|e−π exp

(√
3

2
rn(z)

)
.

3 Main technical result

In this section we prove our main technical result, Proposition 3.3 and its
immediate consequence, Theorem B. Let ∂∞ be the set of those points z in
I0
∞ that Bn(z) ∩ ∂E(Bn−1(z)) �= ∅ for infinitely many n. As the first little

lemma, we show that the set ∂∞ can be neglected in our considerations.

Lemma 3.1. HD(∂∞) ≤ 1.

Proof. Let

∂n =
⋃

z∈I0∞

E−n(A+(rn(z), rn(z) + 2π) ∪ A+(Rn(z) − 2π, Rn(z))

where A+(a, b) denotes the half-annulus with radii a and b. For every k ≥ 0
the set

⋃
n≥k ∂n is a covering of ∂∞. The half-annuli A+(rn(z), rn(z) + 2π) ∪

A+(Rn(z) − 2π, Rn(z)) can be covered with M1Rn(z) sets of diameters less
than 1, where M1 is a constant. Therefore, because of (6), Kn−1(z) ∩ ∂n can
be covered with no more than M1Rn(z) sets Ji,n(z) of diameters less than
M2|(En)′(z)|−1, where M2 is a constant. Fix T ≥ 2q. Since any two sets
Kn−1(z) and Kn−1(z

′) are either disjoint or equal, one can find a finite set
Zn ⊂ I0

∞ such that Kn−1(z) and Kn−1(z
′) are disjoint for z, z′ ∈ Zn, z �= z′

and
∂n ∩ B+(0, T ) ⊂

⋃
z∈Zn

Kn−1(z) ⊂ B+(0, 2T ),

where B+(0, r) denotes half-disk B(0, r) ∩ {z : Re z > 0}. Fix now ε > 0
and take n ≥ 1 so large that Lemma 2.2 is satisfied for α = 2/ε and 2T .

7



Applying this lemma, using (7) and (4), we get∑
z∈Zn

∑
Ji,n

(diam Ji,n(z))1+ε ≤
∑
z∈Zn

M1M
1+ε
2 Rn(z)|(En)′(z)|−(1+ε)

≤ KM1M
1+ε
2

∑
z∈Zn

|E ′(En−1(z))| · |(En)′(z)|−(1+ε)

≤ KM1M
1+ε
2

∑
z∈Zn

|(En)′(z))|−ε|(En−1)′(z)|−1

≤ KL−εM1M
1+ε
2

∑
z∈Zn

|(En−1)′(z)|−2|(En−1)′(z)|−1

≤ KL−εM1M
1+ε
2 e−(n−1)

∑
z∈Zn

|(En−1)′(z)|−2

Since the Lebesgue measure of each set of the form Kn−1(z) is proportional
to |(En−1)′(z)|−2, we get that there exists a contstant M3 > 0 such that
the last term in the above inequality is less than or equal to M3e

−(n−1) ·
area(B+(0, 2T )).
Hence

∞∑
n=k

∑
z∈Zn

∑
Ji,n

(diam Ji,n(z))1+ε ≤ M3·area(B+(0, 2T ))
∞∑

n=k

e−(n−1) = 2πT 2M3e
2 e−k

e − 1
.

Since limk→∞ e−k = 0, we therefore conclude that the (1 + ε)-dimensional
Hausdorff measure of ∂∞ ∩ B+(0, T ) is equal to 0 for every ε > 0. Hence
HD(∂∞) ≤ 1.

Let h : R+ �→ R+ be a weakly exp-adapted function and let δ ∈ [0, 1].

Definition 3.2. We say that the sequence of real positive numbers {xn}∞n=1

satisfies the condition Δ(h, δ) if for every c > 0 there exists n0 such that for
every n ≥ n0 the following inequality holds

cn xδ
1..x

δ
n−1

h(x1)..h(xn−1)
≤
(

h(xn)

xn

)δ

. (10)

We say that the sequence {xn}∞n=1 satisfies condition Δ′(h, δ) if for every
c > 0 and for every n0 there exists n ≥ n0 such that

cn xδ
1..x

δ
n−1

h(x1)..h(xn−1)
>

(
h(xn)

xn

)δ

. (11)

The proof of Theorem A is based on the following.
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Theorem B. Suppose that h : R+ �→ R+ is an exp-adapted function. If for
every z ∈ D(h) the sequence rn(z) satisfies condition Δ(h, δ) then

HD(D(h)) ≥ 1 + δ.

If for every z ∈ D(h) the sequence Rn(z) satisfies condition Δ′(h, δ) then

HD(D(h)) ≤ 1 + δ.

This theorem is in turn an immediate consequence of Proposition 3.3 formu-
lated below. If h : R+ �→ R+ is a weakly exp-adapted function and q ≥ 0 is
large enough, then consider the set

D∗(h) = Dq
∗(h) = {z ∈ I0,q

∞ : 2π(|sn(z)| + 1) ≤ h(|En(z)|) for all n ≥ 0}.

Proposition 3.3. Suppose that h : R+ �→ R+ is a weakly exp-adapted func-
tion. If for every z ∈ D∗(h) the sequence rn(z) satisfies condition Δ(h, δ)
then HD(D∗(h)) ≥ 1 + δ.
If for every z ∈ D∗(h) the sequence Rn(z) satisfies condition Δ′(h, δ) then
HD(D∗(h)) ≤ 1 + δ.

Before proving this proposition, we shall show how it implies Theorem B.
Indeed, first, if h is exp-adapted, then D∗(h) ⊂ D(h). Secondly, if h is
exp-adapted, then 2h is weakly exp-adapted and D(h) ⊂ D∗(2h). Now, to
finish the argument it suffices to notice that if a sequence of positive reals
satisfies the condition Δ(h, δ) (respectively Δ′(h, δ)), then it also satisfies the
condition Δ(2h, δ) (respectively Δ′(2h, δ)).

We shall now pass to the proof of Proposition 3.3 which is based on a Cantor-
type construction and several lemmas. Fix an arbitrary square B0 ∈ B. We
shall construct inductively a sequence (actually two sequences) {Bn}∞n=0 of
subfamilies of B as follows. Put B0 = {B0} and suppose that the family Bn

has been constructed. Consider B ∈ Bn. Denote by r(E(B)) and R(E(B))
the inner and outer radius (respectively) of the half-annulus E(B). Select
from B all the squares Q that are contained in the half-annulus E(B) and
with the property that

min
z∈Q

{| Im z|} ≤ sup
z∈Q

{h(|z|)} (12)

(1st variant, if chosen in the 1st step kept forever)

or alternatively:
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(*) All the squares Q ∈ B that are contained in the right hand-side half-
annulus A+(2r(E(B)), 1

2
R(E(B)))

and with the property that

4π + max
z∈Q

{| Im z|} ≤ inf
z∈Q

{h(|z|)} (13)

(2nd variant, if chosen in the 1st step kept forever)

These squares will be called the successors of B. The family Bn+1 consists
of all successors of all squares from Bn. Notice that if Bi ∈ Bi, 0 ≤ i ≤ n,
and Bi+1 is a successor of Bi then there exists a unique holomorphic inverse
branch E−n

∗ : Bn → B0 of En such that Ei(E−n
∗ (Bn)) ⊆ Bi for all i =

0, 1, . . . , n. Let E−n(Bn) be the family of all sets E−n
∗ (Bn), where Bn ∈ Bn.

If Kn+1 ∈ E−(n+1)(Bn+1) then there exists a unique Kn ∈ E−n(Bn) such that
Kn+1 ⊆ Kn. The set Kn+1 will be called a child of Kn. The family of all
children of Kn will be denoted ch(Kn).
For every n ≥ 0 define Xn to be the union of closures of all elements of
E−n(Bn). Clearly Xn+1 ⊆ Xn. Now we construct the sequence {μn}∞n=0

of Borel probability measures on the sets Xn as follows. Let μ0 be the
normalized Lebesgue measure on X0 = B0. Suppose now that the measure
μn on Xn has been defined. The measure μn+1 on Xn+1 is defined on each
Kn+1 ∈ E−(n+1)(Bn+1) as follows

μn+1|Kn+1 =
area(Kn+1)∑

K∈ch(Kn) area(K)
· μn|Kn, (14)

where Kn is the unique element of E−n(Bn) containing Kn+1. Notice that
μn+1(Kn ∩ Xn+1) = μn(Kn), and therefore

μk(Kn) = μn(Kn).

for all k ≥ n and every Kn ∈ E−n(Bn). Thus, there exists a unique Borel
measure μ on the set X∞ =

⋂
n≥0 Xn (denoted respectively by X1

∞ and X2
∞

if we want to indicate that it comes from the first or second variant of our
construction) such that

μ(Kn) = μn(Kn) for every Kn ∈ E−n(Bn). (15)

It follows from (14), (15), (9) and (6) that

μ(Kn(z)) � area(Kn(z)) ·
n∏

i=1

area(Ki−1(z))∑
K∈ch(Ki−1(z)) area(K)

= c(z)2n

(
n∏

j=1

rj(z)

)−2 n∏
i=1

area(Ki−1(z))∑
K∈ch(Ki−1(z)) area(K)
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with some c(z) ∈ [M−1, M ]. But by (6) and by the inductive step of our
construction,

area(Ki−1(z))∑
K∈ch(Ki−1(z)) area(K)

� area Ei(Ki−1(z))∑
K∈ch(Ki−1(z)) area(Ei(K))

� r2
i (z)

h(ri(z))ri(z)
.

Hence, there exists a constant C ≥ 1 such that with some c1(z), c2(z) ∈
[(CM)−1, CM ], we have that

μ(Kn(z)) = cn
1 (z)

(
n∏

j=1

rj(z)

)−2 n∏
i=1

r2
i (z)

ri(z)h(ri(z))
(16)

= cn
1 (z)

(
n∏

j=1

rj(z)

)−(1+δ) n∏
i=1

rδ
i (z)

h(ri(z))

= cn
2 (z) diam(Kn(z))1+δ

n∏
i=1

rδ
i (z)

h(ri(z))
.

Let ∂0
∞ be the set of those points z in I0

∞ that Bn(z) never intersects the
boundary of the half annulus E(Bn−1(z)). Of crucial importance is the fol-
lowing straightforward.

Observation 3.4. B0 ∩ D∗(h) ∩ ∂0
∞ ⊆ X1

∞ and D∗(h) ⊇ X2
∞.

Proof. Fix z ∈ B0 ∩ D∗(h) ∩ ∂0
∞. Our aim is to show that Bn(z) ∈ Bn (first

variant construction) for all n ≥ 0. For n = 0 this is obvious and we proceed
by induction. Suppose that Bn(z) ∈ Bn for some n. Since z ∈ D∗(h) we
obtain

min
w∈Bn+1(z)

{| Im w|} ≤ 2π(|sn+1(z)| + 1) ≤ h(|En+1(z)|) ≤ sup
w∈Bn+1(z)

h(|w|),

and since Bn+1(z) does not intersect the boundary of E(Bn(z)) (as z ∈ ∂0
∞),

we get that Bn+1(z) ⊆ E(Bn(z)). Thus Bn+1(z) ∈ Bn+1 and, in consequence,
z ∈ X1

∞.
Assume now that z ∈ X2

∞. Then

2π(|sn+1(z)| + 1) = 2π(|sn+1(z)| − 1) + 4π ≤ max
w∈Bn+1(z)

{| Imw|} + 4π

≤ inf
w∈Bn+1(z)

{h(|w|)} ≤ h(|En+1(z)|).

So, z ∈ D∗(h).

We shall now prove the second part of Theorem B.
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Lemma 3.5. If for every z ∈ D∗(h) the sequence rn(z) satisfies condition
Δ′(h, δ) then HD(D∗(h)) ≤ 1 + δ.

Proof. For every n ≥ 0 let ∂n
∞ be the set of all points z ∈ I0

∞ such that
Bj+1(z) ∩ ∂E(Bj(z)) = ∅ for all j ≥ n. Notice that ∂∞ =

⋃
n≥0 I0

∞ \ ∂n
∞.

By Lemma 3.1 it is enough to show that HD(D∗(h) ∩ ∂n
∞) ≤ 1 + δ for every

n ≥ 1. And since En(D∗(h) ∩ ∂n
∞) ⊂ D∗(h) ∩ ∂0

∞, it is in fact sufficient to
demonstrate that HD(D∗(h) ∩ ∂0

∞) ≤ 1 + δ. Obviously it suffices to prove
that HD(D∗(h) ∩ ∂0

∞) ≤ 1 + δ. And eventually, by Observation 3.4, it is
sufficient to show that

HD(X1
∞) ≤ 1 + δ.

Let μ be the measure on X1
∞ constructed above. Fix n ≥ 2. Cover X1

∞ by
countably many mutually disjoint sets Kn−1(zj) such that zj ∈ X1

∞ for all
j. Fix zj = z. Consider an arbitrary set F ⊆ E(Bn−1(z)) = En(Kn−1(z)).
Then in view of (8)

diam(E−n
z (F )) ≤ Kn

(
n∏

k=1

rk(z)

)−1

· diam F (17)

where E−n
z : E(Bn−1(z)) → Kn−1(z) is the unique holomorphic inverse

branch of En defined on E(Bn−1(z)) and sending En(z) to z. Now con-
sider the covering Gn

z of E(Bn−1(z))∩{w : | Im w| ≤ h(Rn(z))} by squares G
with the following properties

• the length of each edge of G is equal to h(Rn(z))

• one of the horizontal edges of G is contained in the real axis

• at least two of the edges of G are contained in E(Bn−1(z)).

By (16) we therefore get

μ(Kn(z)) = cn
1 (z)

(
n∏

j=1

rj(z)

)−(1+δ) n∏
i=1

rδ
i (z)

h(ri(z))
. (18)

Let G̃ = G ∩ E(Bn−1(z)) and put G̃n
z = {G ∩ E(Bn−1(z)) : G ∈ Gn

z }.
Assuming that n is big enough (which implies that h(Rn(z)) is as large
as we wish) we see that there exists a universal constant κ ∈ (0, 1) such
that G contains at least κh2(Rn(z)) ≥ κh2(rn(z)) squares from Bn. Since

12



diam G ≤ √
2h(Rn(z)) ≤ C

√
2h(rn(z)), using (18) and (17) we therefore get

μ(E−n
z (G̃)) ≥

≥ κh2(rn(z))cn
1 (z)

(
n∏

i=1

ri(z)

)−(1+δ) n∏
i=1

rδ
i (z)

h(ri(z))

= κ(C
√

2)−(1+δ)cn
1 (z)

(
C
√

2h(rn(z))∏n
i=1 ri(z)

)1+δ (
rn(z)

h(rn(z))

)δ

·
n−1∏
i=1

rδ
i (z)

h(ri(z))

≥ κ(CK1+δ)−n

(C
√

2)1+δ
(diam(E−n(G̃)))1+δ

(
rn(z)

h(rn(z))

)δ

·
n−1∏
i=1

rδ
i (z)

h(ri(z))
.

Using (11) and the assumptions of our lemma, we thus obtain

μ(E−n(G̃)) ≥ (diam(E−n(G̃)))1+δ. (19)

The squares G need not be disjoint but it is possible to choose the covering
G so that its multiplicity does not exceed 2. Since the union of all squares

G̃ ∈ G̃n
z contains all the successors of En−1

(
Kn−1(z)

)
, the set E−n

z

(⋃
G̃∈G̃n

z
G̃
)

covers all the children of Kn−1(z), and consequently, covers Kn−1(z) ∩ X1
∞.

Hence ⋃
j

⋃
G̃∈G̃n

zj

E−n
zj

(
G̃
)⊃ X1

∞.

By (19) ∑
j

∑
G̃∈G̃n

zj

(diamE−n
zj

(G̃))1+δ ≤
∑

j

∑
G̃∈G̃n

zj

μ(E−n
zj

(G̃))

≤
∑

j

μ
(
Kn−1(zj)

)≤ 2μ(B0).

Since the diameters of the sets E−n
zj

(G̃), j ≥ 1, G̃ ∈ G̃n
zj

, converge uniformly

to 0 as n → ∞, we conclude that the Hausdorff measure of the set X1
∞ is

less or equal than 2. Hence HD(X1
∞) ≤ 1 + δ and the proof is complete.

Lemma 3.6. If for every z ∈ D∗(h) the sequence rn(z) satisfies condition
Δ(h, δ) then HD(D∗(h)) ≥ 1 + δ.

Proof. By Observation 3.4 that it is sufficient to show that

HD(X2
∞) ≥ 1 + δ.

13



It follows from (10) and (16) that for all Q ∈ E−n(Bn) and all n ≥ 1 large
enough,

μ(Q) ≤ cn
2 (z)

n∏
i=1

rδ
i (z)

h(ri(z))
(diam Q)1+δ

≤ cn
2 (z)

n−1∏
i=1

rδ
i (z)

h(ri(z))

rδ
n(z)

hδ(rn(z))
(diam Q)1+δ

≤ (diam Q)1+δ

(20)

Fix a constant D ≥ 2. Take an arbitrary point z ∈ X2
∞. Our aim is to show

that if r is small then μ(B(z, r)) ≤ const · r1+δ. Take the least n ≥ 1 such
that

diam Kn(z) ≤ r. (21)

Consider an arbitrary Q ∈ E−n(Bn) such that Q ∩ B(z, r) �= ∅. Using (6),
(*) and (21), we obtain that if r > 0 is sufficiently small (so that n ≥ 1 is
large enough), then

K−1 diam Kn(z) ≤ diam Q ≤ K diam Kn(z) ≤ Kr. (22)

Since δ ∈ [0, 1], applying this, (20) and (21), we get that

μ(Q) ≤ (diam Q)1+δ ≤ K1+δ(diamKn(z))1+δ ≤ K1+δr1+δ. (23)

Denote the family of all sets Q ∈ E−n(Bn) intersecting B(z, r) by F(z, r).
We shall consider several cases.

Case 1: r ≤ D diam Kn(z)
Since z ∈ X2

∞, we get

Kn−1(z) = E−n
z (A+(rn(z), Rn(z))) ⊇ E−n

z (B(En(z), rn(z)))

⊇ B(z, K−1|(En)′(z)|−1rn(z))

⊇ B(z, (
√

2πK2)−1rn(z) diam Kn(z))

⊇ B(z, D(K + 1) · diam Kn(z)) ⊇ B(z, (K + 1)r) (24)

if n is sufficiently large for rn(z) to be bigger than
√

2πK2(K + 1)D (which
happens if r > 0 is small enough). By (22) and (24), if Q ∈ F(z, r), then
Q ⊂ Kn−1(z). Since En is injective on Kn−1(z) and since diam

(
En(B(z, r))

)
is less than 2Kr|(En)′(z)|, the number of squares En(Q), Q ∈ F(z, r) is
bounded above by 4K2π−1r2|(En)′(z)|2. Since

r ≤ D diam Kn(z) ≤ DK
√

2π|(En)′(z)|−1,

14



we obtain that
�{En(Q) : Q ∈ F(z, r)} ≤ 8K4M2π.

But �{En(Q) : Q ∈ F(z, r)} = �F(z, r). So using (23) we get that

μ(B(z, r)) ≤
∑

Q∈F(z,r)

μ(Q) ≤
∑

Q∈F(z,r)

K1+δr1+δ ≤ 8πK5+δM2r1+δ.

Case 2: D diam Kn(z) ≤ r ≤ D−1 diam Kn−1(z)
Since z ∈ X2

∞, using (7), we get with D ≥ 2 large enough that

Kn−1(z) ⊇ B(z, K−1rn(z)|(En)′(z)|−1) ⊇ B(z, K−2|(En−1)′(z)|−1)

⊇ B(z, (
√

2πK3)−1 diam(Kn−1(z))) ⊇ B(z, (K + 1)r).
(25)

By (22) and (25), if Q ∈ F(z, r), then Q ⊆ Kn−1(z). Hence applying (18),
we get that

μ(B(z, r)) ≤
∑

Q∈F(z,r)

μ(Q)

≤
∑

Q∈F(z,r)

cn
1 (z)

(
n∏

i=1

ri(z)

)−(1+δ) n∏
i=1

rδ
i (z)

h(ri(z))

= �F(z, r) · cn
1 (z)

n∏
i=1

r−1
i (z)

h(ri(z))
. (26)

Now we consider two subcases.

Case 2a: diam
(
En(B(z, r))

)≤ 2h(rn(z)).
Since �F(z, r) � area

(
En(B(z, r))

)
, using (8), we can continue (26) as fol-

lows.

μ(B(z, r)) � cn
1 (z) area(En(B(z, r))

n∏
i=1

(ri(z))−1

h(ri(z))

≤ πKncn
1 (z)r2

n∏
i=1

r2
i (z)

n∏
i=1

(ri(z))−1

h(ri(z))

≤ KnCnr2

n∏
i=1

ri(z)

h(ri(z))

= KnCnr1+δr1−δ
n∏

i=1

ri(z)

h(ri(z))
.
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But diam
(
En(B(z, r))

)≤ 2h(rn(z)), so using (8) again, we get that

r ·
n∏

i=1

ri(z) ≤ Knh(rn(z)).

Therefore applying (10) with c = K2−δC, we finally obtain

μ(B(z, r)) ≤ KnCnr1+δ

(
Kn h(rn(z))

r1(z)..rn(z)

)1−δ

·
n∏

i=1

ri(z)

h(ri(z))

= r1+δ(CK2−δ)n ·
n−1∏
i=1

ri(z)δ

h(ri(z))
·
(

rn(z)

h(rn(z))

)δ

≤ r1+δ,

and we are done in this case.

Case 2b: diam
(
En(B(z, r))

)
> 2h(rn(z)).

In this case we estimate the cardinality of F(z, r) in a different way. Using
first (13) and then (8), we get

�F(z, r) � area(En(B(z, r)) ∩ {w : | Imw| ≤ h(Rn(z))})
≤ 2 diamEn(B(z, r))h(Rn(z))

≤ 2Ch(rn(z)) · 2rKn ·
n∏

i=1

ri(z).

Hence, we can continue (26) as follows.

μ(B(z, r)) � 4C(Kc1(z))nr
h(rn(z))

h(r1(z))...h(rn(z))

≤ 4C(CKM)nr1+δr−δ
n−1∏
i=1

(h(ri(z)))−1.

Since diam
(
En(B(z, r))

)
> 2h(rn(z)), we get from (8) that

r · r1(z)..rn(z) ≥ K−nh(rn(z)).

Thus

μ(B(z, r)) ≤ 4CK(CMK1+δ)nr1+δ ·
n−1∏
i=1

(ri(z))δ

h(ri(z))
·
(

rn(z)

h(rn(z))

)δ

.
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Using (10) we obtain
μ(B(z, r)) ≤ r1+δ.

Case 3: r > D−1 diam Kn−1(z).
This means that diam Kn−1(z) < Dr. But by our choice of n, diam Kn−1(z) >
r = D−1(Dr). This implies that diam Kn−2(z) > Dr if r > 0 is small enough
so that n ≥ 1 is large enough. So, n− 1 is the number ascribed to the radius
Dr as in the begining of the proof and the Case 1 holds. Therefore

μ(B(z, r)) ≤ μ(B(z, Dr)) ≤ (Dr)1+δ.

4 Conclusions

It is obvious that for every ε > 0 the function

hε(x) =
x

(log x)ε

is exp-adapted. In order to prove the Theorem A, it is therefore sufficient to
apply Theorem B and make use of the following observation.

Proposition 4.1. If z ∈ D(hε) = Dε, then the sequence rn(z) satisfies con-
dition Δ(hε, δ) for every δ < 1

1+ε
and the sequence Rn(z) satisfies Δ′(hε, δ)

for every δ > 1
1+ε

.

Proof. Since Rn(z) = eπrn(z) we need only to check that rn(z) satisfies
Δ(hε, δ) if δ < 1

1+ε
and Δ′(hε, δ) if δ > 1

1+ε
.

The inequality in Δ(hε, δ) is equivalent to the following

cn(log rn(z))εδ ≤ (r1(z)...rn−1(z))1−δ

(log r1(z)... log rn−1(z))ε
.

Since rn−1(z) � log rn(z), it follows from lemma 2.3 that the above inequality
holds (for sufficiently big n) if εδ < 1 − δ.
Similarily, if εδ > 1 − δ then for n big enough

cn(log rn(z))εδ >
(r1(z)..rn−1(z))1−δ

(log r1(z).. log rn−1(z))ε
.

which is our claim.
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In this way we have proved that

HD(Dε) ≥ 1 + δ for every 0 < δ <
1

1 + ε

and

HD(Dε) ≤ 1 + δ for every δ >
1

1 + ε
.

Passing with δ to the limit 1
1+ε

, we obtain

HD(Dε) = 1 +
1

1 + ε
.

Since HD (
⋃∞

n=0 E−n(Dε)) = HD(Dε), Theorem A is thus proved.
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